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TẠP CHÍ KHOA HỌC – ĐẠI HỌC TÂY BẮC
Khoa học Tự nhiên và Công nghệ  

1. Introduction

The complex Monge-Ampère operator 
( .)c ndd  is well defined over the class of locally 
bounded plurisubharmonic functions (see [1]). 
Recently, to extend the domain of definition of 
this operator for plurisubharmonic functions 
which are not neccessary to be locally bounded, 
in [6], [7] Cegrell introduced and investigated  
the classes 0 ( ), ( ), ( ), ( ), ( )p pΩ Ω Ω Ω Ω      
on which the complex Monge-Ampère operator 
is well defined. He has developed pluripotential 
theory on these classes.  To extend the class 
of plurisubharmonic functions and to study 
a class of the complex differential operators 
more general than the Monge-Ampère 
operator, in [2] and [10], the authors introduced 
m-subharmonic functions and studied the 
complex Hessian operator. They also were 
interested in the complex Hessian equations 
in n�  and on compact Kahler  manifolds. 
Continuing to study the complex Hessian 
operator for m-subharmonic functions which 
may be not locally bounded, in recent preprint, 
Lu Hoang Chinh introduced the Cegrell classes 

0 ( ), ( )m mΩ Ω   and ( )m Ω  associated  to 
m-subharmonic functions (for details, see [9]) 
and has proved the complex Hessian operator is 
well defined on these classes.         

On the other hand, convex, subharmonic 
and plurisubharmonic functions are all convex 

cones in some larger linear space. Given any 
such cone, K  say, we can investigate the space 
of differences from this cone Kδ . Such studies 
are often motivated by algebraic completion of 
the cone, and differences of convex functions 
were considered by F. Riesz in as early as 1911. 
The δ - convex functions, or d.c. functions as 
they sometimes are denoted, were studied by 
Kiselman [13], and Cegrell [5], and have been 
given attention in many areas ranging from 
nonsmooth optimization to super-reflexive 
Banach spaces [3]. Theδ -subharmonic where 
first given a systematic treatise in [14]. The class 
δ -plurisubharmonic functions were studied 
by Cegrell [4], and Kiselman [13], where the 
topology was defined by neighbourhood basis 
of the form ( ) ( ) ,U U∩ − ∩   U  a 
neighbourhood of  the origin 1

loc.L  

In [16], the authors gave a subset of 
m-subharmonic functions, the subclasses  

0 ( )mδ Ω  and ( )( )mSH L∞δ ∩ Ω  of ( ).mSHδ − Ω  
In this paper we will give and study a subset of 
delta m-subharmonic functions, ( ).m

pδ Ω  

     For convenience we will denote the 
class of negative m-subharmonic functions on a 
domain Ω  by ( )m

− Ω , and as in [9] we will 
denote the class of  bounded m-subharmonic 
functions with boundary value zero and finite 
total m-Hessian mass by ( )0 .m Ω

For the notation of the so called energy class 
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( )m Ω  on a hyperconvex domain Ω  we refer 
to the paper [9]. As for now we remind the 
reader that the generalized complex m-Hessian 
operator is well defined in ( )m Ω  and functions 
from ( )m Ω  has finite total m-Hessian mass. 

The paper is organized as follows. Beside 
the introduction  the paper has two sections. In 
Section 2 we recall the definitions and results 
concerning to m-subharmonic functions which 
were introduced and investigated intensively in 
recent years by many authors, see [15],... We 
also recall the Cegrell classes of m-subharmonic 
functions ( )m Ω  and ( )m Ω  introduced and 
studied in [9] and the class ( )m

χ Ω  introduced 
and studied in [12]. Final, in Section 3 we 
construct a locally convex topology on the 
vector space , 0.m

p pδ ≥  

2. Preliminairies

2.1. m-Hessians

Let Ω  be a hyperconvex domain in .n�  For 
a twice continuously differentiable real function

2 ( ),u C∈ Ω  the secondorder differential at a 
fixed point 0z ∈Ω

,
,2

n
c

j kj k
j k

idd u u dz dz= ∧∑
is a Hermitian quadratic form. After 

an appropriate unitary transformation of 
coordinates, it reduces to the diagonal form

1 1 1 1[ ],
2

c
n n

idd u dz dz dz dz= λ ∧ + + λ ∧

where 1( ), , ( )nu uλ … λ  are the eigenvalues 
of the Hermitian matrix ,( ),j ku  which are real, 
i.e.. 1( ) ( ( ), , .( )) n

nu u uλ = λ … λ ∈�  It is easy to 
see that

( ) !( )! ( ) , 1c m n m n
mdd u m n m H u m n−∧β = − β ∀ ≤ ≤

where 
1

11
( )

m
m

m j j
j j n

H u
≤ < < ≤

= λ …λ∑
  

is the Hessian of order m of the vector

1( ) ( ( ), , .( )) n
nu u uλ = λ … λ ∈�  Thus, the 

operator ( ) , 1 ,c m n mdd u m n−∧β ∀ ≤ ≤  for twice 
continuously differentiable functions is related 
to the Hessian of the vector 1( , , ).nλ = λ … λ

2.2. m-subharmonic functions

We recall the class of m-subharmonic 
functions introduced and investigated in [2] 
recently. For1 ,m n≤ ≤  we define

1
(1,1)

ˆ { : 0, , 0},n m n m
m

− −Γ = η∈ η∧β ≥ … η ∧β ≥�

where (1,1)�  denotes the space of (1,1)
-forms with constant coefficients.

Definition  2.1. Let u  be a subharmonic 
function on an open subset .nΩ⊂ �  Then u  is 
said to be a m-subharmonic function on Ω  if 
for every 1 1, , m−η … η  in ˆ

mΓ  the inequality

1 1 0,c n m
mdd u −
−∧ η ∧…∧η ∧β ≥

holds in the sense of currents.

By ( )mSH Ω  (resp. ( )mSH − Ω ) we denote 
the cone of  m-subharmonic functions (resp. 
negative m-subharmonic functions) on 

.Ω  Before formulating basic properties of 
m-subharmonic, we recall the following (see 
[2]).

For 1( , , ) n
nλ = λ … λ ∈�  and 1 m n≤ ≤   

define

1

11
( ) .

m
m

m j j
j j n

S
≤ < < ≤

λ = λ λ∑




Set

1 2{ 0} { 0} { 0}.m mS S SΓ = ≥ ∩ ≥ ∩ ∩ ≥

By   we denote the vector space of complex 
hermitian n n×  matrices over .�  For A∈  
let  1( ) ( , , ) n

nAλ = λ … λ ∈�  be the eigenvalues 
of .A  Set

� ( ) ( ( )).m mS A S A= λ

As in [11] we define 

� � �1{ : ( ) } { 0} { 0}.m mmA A S SΓ = ∈ λ ∈Γ = ≥ ∩ ∩ ≥
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Example 2.2. Let 
2 2 2 2

41 2 3 1 2 3 4( , ,, ) 9 .5u z z z z z z zz − −= +  
It follows from (01), we see that 3

2 ( ).u SH∈ �  
However, u is not a plurisubharmonic function 
in 4�  because the restriction of u on the line 

3 4(0,0, ) (0,0, )0 ,0,z z∪  is not subharmonic.

Now as in [9] and [10], we define the 

complex Hessian operator of locally bounded 
m-subharmonic functions as follows.

Definition 2.3. Assume that 

1, , ( ) ( ).p m locu u SH L∞… ∈ Ω ∩ Ω  Then the 
complex Hessian operator 1( , , )m pH u u…  is 
defined inductively by

From the definition of m-subharmonic 
functions and using arguments as in the proof of 
Theorem 2.1 in [1] we note that 1( , , )m pH u u…  
is a closed positive current of bidegree 
( , )n m p n m p− + − +  and this operator in 
continuous under decreasing sequences of 
locally bounded m-subharmonic functions. 
Hence, for ,p m=   1

c c n m
mdd u dd u −∧ ∧ ∧β  

is a nonnegative Borel measure. In particular, 
when 1 ( ) ( )m m locu u u SH L∞= = = ∈ Ω ∩ Ω  
the Borel measure

( ) ( ) ,c m n m
mH u dd u −= ∧β

is well defined and is called the complex 

Hessian of u.

2.3. The 0 ( )m Ω  and ( )m Ω  classes

Next, we recall the classes 0 ( )m Ω  and 
( )m Ω  introduced and investigated in [9]. First 

we give the following.

Let Ω  be a bounded domain in .n�  Ω  is said 
to be m-hyperconvex if there exists a continuous 
m-subharmonic function :u −Ω→ �  such 
that { }c u cΩ = < Ω  for every 0.c <  As 
above, every plurisubharmonic function 
is m-subharmonic with 1m ≥  then every 
hyperconvex domain in n�  is  m-hyperconvex. 
Let nΩ⊂ �  be a m-hyperconvex domain.  Set

1 1 1( ).c c n m c c c n m
p p pdd u dd u dd u dd u dd u− −

−∧ ∧ ∧β = ∧ ∧ ∧β 

0 0 ( ) { ( ) ( ) : lim ( ) 0, ( ) }, m m m mz
u SH L u z H u− ∞

→∂Ω
Ω

= Ω = ∈ Ω ∩ Ω = < ∞∫ 

0( ) ( ) : , sup ( ) ,{ }m m m m j m j
j

u SH u u H u−

Ω

= Ω = ∈ Ω ∃ < ∞∫�   

and

0
0 0( ) ( ) : , a neighborhood , and  on ,

sup ( ) ,

{
}

m m m m j

m j
j

u SH z z u u

H u

−

Ω

= Ω = ∈ Ω ∀ ∈Ω ∃ ω ω

< ∞∫
�   

where ( ) ( )c m n m
mH u dd u −= ∧β  denotes the 

Hessian measure of  ( ) ( ).mu SH L− ∞∈ Ω ∩ Ω  
From  Theorem 3.14 in [9] it follows 
that if ( ),mu∈ Ω  the complex Hessian 

( ) ( )c m n m
mH u dd u −∧= β  is well defined and is 

a Radon measure on .Ω  On the other hand, by 
Remark 3.6 in [9] we may give the following 
description of the class ( ) :m Ω

( ) ( ) : , ( ), on .{ }m m m mu SH U v v u U−= Ω = ∈ Ω ∀ Ω ∃ ∈ Ω =  

3. The topology and m-Hessian on 
m
pδ  class

3.1. Weighted energy classes of SH m  functions

The classes of SH m  functions were introduced 
and investigated by Hung in [12]
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0
1

( ) : ,sup ( ) ) .m n
m j j m j

j

m SH Hχ ϕ ϕ ϕ χ ϕ ϕ−

≥ Ω

 
= ∈ Ω ∃ < +∞ 
 

∫�  

When we take ( ) ( ) , , 0,pt t t pχ += − ∈ ≥�  we have the following class of m-subhamornic 
functions

0
1

( ) : , sup ( ) ( ) .m p n
m j j m j

j

m
p SH Hϕ ϕ ϕ ϕ ϕ−

≥ Ω

 
= ∈ Ω ∃ − < +∞ 
 

∫�  

Now, by the definition of this class, we have 
the following result.  

Theorem 3.1. Forall 0,p ≥  then class m
p� 

has the following properties:

i) m
p� is a convex cone set, i.e. if , m

pϕ ψ ∈� 
and , 0a b ≥  then ;m

pa bϕ ψ+ ∈�

ii) m
p� satisfies the max property, 

i.e. if   and ( )m
p mSHϕ ψ −∈ ∈ Ω�  then  

max( , ) .m
pϕ ψ ∈�

Proof. i) First, we prove that if ( )m
pu∈ Ω�  

then ( ).m
puα ∈ Ω�  Indeed, let 0{ } ( ),j mu ⊂ Ω  

ju u�  on Ω  with

sup ( ) ( ) .p c m n m
j j

j
u dd u β −

Ω

∧− < ∞∫
It is clear that 0{ } ( ),j muα ⊂ Ω  ju uα α�  

on .Ω  Moreover, since 

sup ( ) ( ) sup ( ) ( ) .p c m n m m p p c m n m
j j j j

j j
u dd u u dd uα α β α β− + −

Ω Ω

∧ ∞∧− = − <∫ ∫

Hence ( ).m
puα ∈ Ω�  By the above proof, 

we can assume that 1.α γ+ =

Let 0{ },{ } ( ),j j mu v ⊂ Ω  ju u�  on ,Ω  

jv u�  on ,Ω

sup ( ) ( )p c m n m
j j

j
u dd u β −

Ω

∧− < ∞∫
and 

sup ( ) ( ) .p c m n m
j j

j
vv dd β −

Ω

∧− < ∞∫

By Lemma 2 in [12], we have

1

sup ( ) ( ( ))

2 sup ( ) ( ) sup ( ) ( )

p c m n m
j j j j

j

m p c m n m p c m n m
j j j j

j j

u v dd u v

u dd u v d vd

α γ α γ β

β β

−

Ω

+ − −

Ω Ω

− − +

 
≤ − + − < ∞

∧

∧ 


∧


∫

∫ ∫

It is clear that m
p�satisfies the condition ii). 

Hence, the desired conclusion follows.

3.2. The m
pδ  class

Now we shall introduce the space m
pδ  and 

give some necessary elements that will be used 
to construct the topology on this space. We set

1
loc{ L ( ) : , , }.m m m m

p p p pu v w u v wδ ∈ Ω ∃ ∈ −− = ==   

By Theorem 3.1, the class m
p  is a convex 

cone and so m
pδ  is a vector space.

For m
pu∈  we set

( ) ( ) ).(p
p mHe u u u

Ω
= −∫

For each k∈�  we set
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In the next section, we are going to study 
some properties of the family of subsets 

, .kU k∈�  Then we will construct the topology 
on the vector space p

mδ  from that family.

Now we equip once topology for the space 
.m

pδ  Infact, we will prove that the vector 
space m

pδ  is a locally convex topological 
space, and moreover is Frechet space. First, we 
need some lemmas.

Lemma 3.2. The set kU  is a balanced subset 
in the vector space m

pδ , i.e. ,ku U∀ ∈  we have 
, | | 1.kau U a∈ ∀ ≤

Proof. Given m
pv∈  and 0 1.a≤ ≤  We have

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

mp m
m

p
m

p me av av av a av H v

v H v e v

H

χ

Ω Ω

Ω

= − = −

≤ − =

∫ ∫
∫

From this we infer that kU  is a balanced set.

Lemma 3.3. The set kU  is an absorbing subset 
in the vector space m

pδ , i.e. , 0m
pu δ∀ ∈ ∃ >   

such that , | | .kau U a∈ ∀ < 

Proof. First, given m
pv∈  and 1a ≥  from 

the result above we have

( ) ( ) ( ) ( ) ( )

( )

m
p m m

p

p pe av av av a v

c

H H v

e v
Ω Ω

= − = −

≤ ⋅
∫ ∫

From this result we imply that kU  is a 
absorbing set.

Theorem 3.4. In the class ,m
p  we have the 

following estimates:

i) If , m
pϕ ψ ∈  then

2 2( ) 2 ( ) ( ) .p p p
me c e eϕ ψ ϕ ψ + ≤ + 

ii) If , m
pϕ ψ ∈  are such that ϕ ψ≥  then 

( ) 2 ( ).m
p pe ceϕ ψ≤

Proof. By the definition of the class m
p  

it is enough to prove the proposition when 

0, mϕ ψ ∈

i) First, as in the proof of Proposition 3.4 in 
[8], we have

1 1{ : , , ( ) , ( ) }.p
k m p pU u v w v w e

k
v e w

k
= = − ∈ < <

0{ }

0{ }

( ) ({ }), (1)

({ 2 }) ( ), 1, . (2)

m
mt

m
mt

m

m

H t cap t

t cap t H t
ϕ

ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

<−

<−

≤ < − ∀ ∈

< − ≤ ∀ > ∀ ∈

∫
∫





We have
1

0 { }
( ) ( ) ) ( ) ) .( (p p

tp m me p tH Ht d
ϕ

ϕ ϕ ϕ ϕ
+∞ −

<−Ω
== − − −∫ ∫ ∫

We set 0 ( ) ( ).me Hϕ ϕ
Ω

= ∫  By the Lemma 2.5 in [8], we have
1 1 1

0 0 0( ) ( ) ( ) .m m me e eϕ ψ ϕ ψ+ ≤ +

We set
1

0
( ) ( ) ({ }) .p m

pe p t t cap t dtϕ ϕ
+∞ −= − − < −∫

Applying the formula (1) we infer

0( ) ( ), . (3)m
p pe eϕ ϕ ϕ≤ ∀ ∈ 

Applying the formula (2), we have
1

0 { }
2

1

0 { }
2

1

0 { }

1

( ) ( ) 2 ( )

2 ( ) ( )

2 ( ) ( ) .

p
t m

p
t m

p

m

m

p

t

m

m p

e p t H dt

p t H dt

p t H dt

ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

+∞ −

<−

+∞ −

<−

+∞

<

+ − −

−

≤ − −

= − −

= − −

∫ ∫

∫ ∫

∫ ∫
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So we imply 1

}

1

2

0 {
( ) 2 ( ) ( )

2 ( )

2 ( 2 ) ( )

2 ( ) ( )

2 ( ).

m p
p

m
p

m

m

m

p
mt

p
m

p

p
m

e p t H dt

e

H

c H

ce

ϕ
ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ

+ −

Ω

Ω

+∞ −

<−
≤ − −

≤

= −

≤ −

=

∫ ∫

∫
∫



Therefore we have

( ) 2 ( ). (4)m
p pe ceϕ ϕ≤

For every [0,1]a∈  we have

1

0

1

0

1

0

((1 ) ) ( ) ({(1 ) })

( ) ({ } { })

( ) [ ({ }) ({ })]

( ) ( ).

p

p

m
p

m

m

p p

p

e a a p t t cap a a t dt

p t t cap t t dt

p t t cap t cap t dt

e e

ϕ ψ ϕ ψ

ϕ ψ

ϕ ψ

ϕ ψ

+∞ −

+∞ −

+∞ −

− + = − − − + < −

≤ − − < − ∪ < −

≤ − − < − + < −

= +

∫
∫
∫



 

The following inequalities are straightforward
1 1

0 0 0
1

0 0

0 0 0

( ) ( ( ) ( ) )

2 ( ( ) ( )),
1( ) [ ( ) ( )].

2 2

mm m

m

e e e
e e

e e e

ϕ ψ ϕ ψ

ϕ ψ
ϕ ψ ϕ ψ

−

+ ≤ +

≤ +

+
≤ +

Using the results above we obtain the following estimations

2 2

( ) (2 ) 2 ( )
2 2

2 ( )
2

2 ( ) ( )

2 2 ( ) 2 ( )

2 [ ( ) ( )].

m
p p p

m
p

m
p p

m m m
p p

p p
m

e e ce

ce

c e e

c ce ce

c e e

ϕ ψ ϕ ψϕ ψ

ϕ ψ

ϕ ψ

ϕ ψ

ϕ ψ

+ +
+ = ⋅ ≤

+
≤

 ≤ + 
 ≤ + 

= +



 

So i) was proved.

ii) It is a consequence of (3) and (4).

 Final, we shall prove m
pδ  is a locally 

convex topology space.

Theorem 3.5. The vector space m
pδ  is a 

locally convex topology.

Proof. It follows from the Theorem 3.4 that 

for every kU  ( 1)k ≥  we can find q, for example, 
we can choose 2 2([2 ] 1mq k c= +  such that the 
convex hull of the set qU  is contained in .kU

On other hand, combined with Lemma 3.2 
and Lemma 3.3, that the family   of convex 
hull of sets , 1kU k ≥  is a family of absorbing, 
balanced, convex sets in the vector space 
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.m
pδ  So there is a locally convex topology on 

this space such that the family   becomes a 
neighbourhood basis of origin.
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MỘT SỐ TÍNH CHẤT TÔPÔ CỦA LỚP m
pδ

Đoàn Thị Chuyên
Trường Đại học Tây Bắc

Tóm tắt: Trong bài báo này, chúng tôi sẽ đưa ra và nghiên cứu một lớp con của lớp delta 
m-điều hòa dưới, ( ) , 0.m

p pδ Ω ≥  Sau đó chúng tôi sẽ trang bị một topo cho không gian này và 
chứng minh rằng không gian vector m

pδ là lồi địa phương, hơn nữa nó còn là một không gian 
Frechet.

Từ khóa: Hàmδ -đa điều hòa dưới, hàm m-điều hòa dưới, toán tử m-Hessian, toán tử Monge-
Ampère, hàm trọng, không gian vector tôpô lồi địa phương.
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