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Abstract. In this paper, we introduce a class of weighted energy in the class of m-
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1. Introduction 

Let 
2cdd z  be the canonical Kahler form 

of ,n  where d      and ,
4

cd
i

  
  hence

.
2

c i
dd    We denote by 1

!

n

ndV
n
  the 

volume element of .n  The complex Monge-
Ampère operator ( .)c ndd  is well defined over 
the class of locally bounded plurisubharmonic 
(psh) functions, according to the fundamental 
work of Bedford and Taylor in [1-2]. In [13], 
Demailly generalized the work of Bedford and 
Taylor for the class of locally psh functions 
with bounded values near the boundary. In [7], 

Cegrell then introduced a general class ( )E  
of psh functions on which the complex 
Monge-Ampère operator can be defined. 
Moreover, in [8] Cegrell introduced some 
subclasses of ( )PSH    functions and gave 
some topology properties of these classes. 
Some elements of  the theory of 
plurisubharmonic functions can be found in [1-
5,7-9, 13]. On the other hand, recently, in [6-
14] the authors have studied m-subharmonic 
functions which are extensions of the 
plurisubharmonic functions. The authors  also 
studied the complex m-Hessian operator 

(.) ( .)c m n m

mH dd     which is more general 
than the Monge-Ampère operator. In order to 
study the complex m-Hessian operator for m-
subharmonic functions which are not locally 
bounded, in [11], Chinh introduced the Cegrell 
classes ( )m F  and ( ).m E  Moreover, he 
proved that the complex m-Hessian operator  
is well defined in these classes. Some elements 
of the theory of m-subharmonic functions and 

the complex Hessian operator, that will be 
used throughout the note, can be found in [6-
20],...  Morever, by the same idea of S. 
Benelkourchi, V. Guedj and A. Zeriahi [4], in 
[15] by using m-capacity, the author 
investigated and introduced the classes 

, ( )m  F  and , ( )m  E which are extention of 

the ones were introduced by Lu Hoang Chinh 
[10] for the class of m-subharmonic functions. 

On the other hand, in [21], the authors 

introduced the vector space ( )m F  and 

equiped this space by a norm, which is defined 
by using the m-Hessian measure. They have 

proved ( )m F  is a Banach space and 

( )m F
 
is closed in this space. Moreover, they 

have shown that the topology defined by this 
norm is stronger than the convergence in m-
capacity. Also, in [22], N. Thien has defined a 

quasi-norm on the vector space ( )p E  and 

proved that this vector space with this quasi-
norm is a quasi-Banach space. 

 In this paper, we shall construct a new 

class , ( )m  W of weighted energy functions in 

the class of m-subharmonic functions and 
study some analysis properties of the delta m-
subharmonic functons class. Then, by using 
the similar technique in [15], we introduce 
delta weighted energy class of m-subharmonic 

functions , ( )m  W  and prove this class is 

convex cone and stable under maximum and is 

contained in , ( )m  F  class. We also give a 

relationship between , ( )m  F  and the classes 

, ( )
km  W  with 1, , .k m   
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2. Preliminaries 

Let   be a hyperconvex domain in .n  For a 
twice continuously differentiable real function

2 ( ),u C   the second order differential at a 

fixed point 
0z   

,
,2

n
c

j kj k
j k

i
dd u u dz dz   

is a Hermitian quadratic form. After an 
appropriate unitary transformation of 
coordinates, it reduces to the diagonal form 

1 1 1 1[ ],
2

c

n n

i
dd u dz dz dz dz       

where 
1( ), , ( )nu u   are the eigenvalues of the 

Hermitian matrix
,

( ),
j k

u  which are real, i.e..

1( ) ( ( ), , ( )) .n

nu u u      It is easy to see 
that 

            

( ) !( )! ( ) , 1 (2.1)c m n m n

mdd u m n m H u m n      

 

where 
1

11

( )
m

m

m j j

j j n

H u  
   

   is the Hessian 

of order m of the vector

1( ) ( ( ), , ( )) .n

nu u u      Thus, the operator 

( ) , 1 ,c m n mdd u m n      for twice 
continuously differentiable functions is related 
to the Hessian of the vector 

1( , , ).n     

2.1. The m-subharmonic functions 

Now, we recall the class of m-subharmonic 
functions introduced and investigated in [9] 
recently. For 1 ,m n   set 

1

(1,1)
ˆ { : 0, , 0},n m n m

m               

where (1,1)  denotes the space of (1,1) -forms 

with constant coefficients. 

Definition  2.1. Let u  be a subharmonic 

function on an open subset .n  Then, u  is 
said to be a m-subharmonic function on   if 

for every 
1 1, , m    in ˆ

m  the inequality 

1 1 0,c n m

mdd u    

     

holds in the sense of currents. 

By ( )mSH   (resp. ( )),mSH    we denote the 
cone of  m-subharmonic functions (resp. 
negative m-subharmonic functions) on .  Now 
we recall the following definitions (see [9]). 

For 
1( , , ) n

n      and 1 m n    define 

1

11

( ) .
m

m

m j j

j j n

S   
   

   

Set 

1 2{ 0} { 0} { 0}.m mS S S         

By ,H  we denote the vector space of complex 

hermitian n n  matrices over .  For ,AH  let  

1( ) ( , , ) n

nA      be the eigenvalues of .A  
Set 

( ) ( ( )).m mS A S A  

As in [13], we define  

1{ : ( ) } { 0} { 0}.m mmA A S S        H

 

Definition 2.2. Assume that 

1, , ( ) ( ).p m locu u SH L      Then the complex 

Hessian operator 1( , , )m pH u u  is defined 

inductively by 

1 1 1( ).c c n m c c c n m

p p pdd u dd u dd u dd u dd u  

      

 

From the definition of m-subharmonic 
functions and using arguments as in the proof 
of Theorem 2.1 in [2], we note that 

1( , , )m pH u u  is a closed positive current of 

bidegree ( , )n m p n m p     and this operator 
is continuous under decreasing sequences of 
locally bounded m-subharmonic functions. 
Hence, for ,p m   

1

c c n m

mdd u dd u      is a 
nonnegative Borel measure. In particular, 
when 

1 ( ) ( )m m locu u u SH L        the 
Borel measure 

( ) ( ) ,c m n m

mH u dd u     

is well defined and is called the complex 
Hessian of u. 

2.2. The 0 ( )m E  and ( )m F  classes 

Next, we recall the classes 0 ( )m E  and ( )m F  
introduced and investigated in [11]. First we 
give the following classes. 

Let   be a bounded domain in .n  Then   is 
said to be m-hyperconvex if there exists a 
continuous m-subharmonic function 

:u   such that { }c u c   Ð  for every 

0.c   As above, every plurisubharmonic 
function is m-subharmonic with 1.m   So, 
every hyperconvex domain in n  is  m-
hyperconvex. Let n  be a m-hyperconvex 
domain.  Set 
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0 0 ( ) { ( ) ( ) : lim ( ) 0, ( ) }, m m m m
z

u SH L u z H u 




        E E

0{( ) ( ) : , sup ( ) },m m m m j m j
j

u SH u u H u



      åF F E

 
0

0 0( ) ( ) : , a neighborhood , and  on ,

u (

{

s p ) ,}

m m m m j

m j
j

u SH z z u u

H u

 



       



å åE E E

 
where ( ) ( )c m n m

mH u dd u     denotes the 

Hessian measure of  ( ) ( ).mu SH L      
From Theorem 3.14 in [11], it follows that if 

( ),mu E  the complex Hessian 

( ) ( )c m n m

mH u dd u    is well defined and is a 

Radon measure on .  On the other hand, by 
Remark 3.6 in [11], we may give the following 
description of the class ( ) :m E  

{( ) ( ) : , ( ), .}onm m m mu SH U v v u U          ÐE E F

 

Now we recall the two weighted pluricomplex 
energy classes of plurisubharmonic functions 
defined in [2]. 

Definition 2.3. Let :    be an 

decreasing function and 1 m n   and   is a 

bounded m -hyperconvex domain in n . We 
define  

0

, ( ) { ( ) : { } ,

sup ( ) sup ( )( ) }

m m j m j

m c m n m

j j j
j j

u SH u u u on

e u u dd u e



 






      

  

F E

and 

, ,( ) { ( ) : , , }.m m mu SH K v v u on K 

        ÐE F

In the case ( ) 1t   for all 0t  , we get 

, ( )m  F  (resp. , ( )m  E ) coincide with the 

class ( )F  (resp. ( )E ) in [12]. Moreover, by 

Proposition 4 in [18], , ( ) ( )m m   E E  

provided that (2 ) ( )t a t   for all 0t   with 

some 1a  . So by using similar technique in 
[15] we can easily get the following result. 

Proposition 2.4. If (2 ) ( )t a t   for all 0t   

with some 1a   then , ( ) ( )m m   F F  

(resp. , ( ) ( )m m   E E ). 

3. The weighted capacity energy of m-
subharmonic functions 

In this section, we shall study some property 
of weighted capacity energy of m-subharmonic 
functions. As a consequence, we introduce 

some property of , ( )m  E  and , ( )m  F  class. 

Before getting the first result of this section, 
unless otherwise stated, throughout this 
section, to simplify the notation we will write "

A Bˆ " if there exists a constant 0C   such 

that ,A CB  and " ~A B " if there exists a 

constant 1 2, 0    such that 1 2A B A   . 

The following class of functions were 
introduced in [18] 

2

{ :  is a decreasing function  such that

( ) ( ) ( ), 0}.t t t t t t



  

 

 



  

K

ˆ ˆ

As in [3], we put 

, ( ) ( )( ) .c m n m

me u u dd u   



   

Now we will show a basic properties of the 
weighted energy class of delta m-subharmonic 
functions that we will define in the following.  

Definition 3.1. Assume that :    is a 
function satisfies the condition 

(2 ) ( ), 0t a t a    and ( ) 0, 0t t    . 
Then we define 

, ,

0

( ) : { ( ) : ( )

~ ( ) ( ) }.

m

m m m

m

m

SH e

s s C s ds

   

 


    

     

W W
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We put 
, , ,m m m    W W W . 

Note that, the class 
,m W  is extension of 

Cegrell class mF  in [10] and in unweighted 

space mF  [21]. 

Next, by Theorem 3.1 in [3], we shall prove 
the main result of this paper.  

Theorem 3.2. The classes , ( )m  W  are 

convex and stable under maximum, i.e  if 

, ( )m   W  and ( )mSH    then 

,max( , ) ( )m    W . Moreover, 

, ,( ) ( )m m    W F . 

Proof. We only need to prove the Proposition 

for , ( )m  W . 

First, we only prove the stability under 
maximum.  

 Step 1. We assume that (0) 0  . Set 

(1 )
( ) : ( ) , 0.

t

j

e
t t t

j
 


    

Then 
j  is a strictly decreasing function, 

1
j

j
      and (2 ) max( ,2). ( )j jt a t   

for every 0t  . Let max( , )   , hence 

  . Moreover, since { } { }s s       
for every 0s   so we have  

0

0

0

0

( )( ) ( )( ) { }

( ) { }

2 ( )( ) { / 2}

( ) { }

(2 )( (2 ))

2 max( ,2) ( )( )

( )

( )

( )

( )

c m n m c m n m

j j

m

j m

m c m n m

j

m

j m

c m n m

j

m c

j

dd s dd s ds

A s s C s ds

s dd s ds

A s s C s ds

A dd

a A dd

A

       

 

   

 

   

  



 

























      

    

     

    

 



 











[
1

2 max( ,2) ( ( )( )] ,)

m n m

m c m n ma A dd
j



   









  
with A is a suitable constant. 

Letting j  , we get 

0

( )( ) 2 max( ,2) ( )( )

2 max( ,2) ( ) ( )

~ ( ) .

c m n m m c m n m

m m

m

m

dd a A dd

a A s s C s ds

e

       

 



 

 



    

    

 

 



So ,max( , ) ( )m     W . 

Step 2. In general case we set 

( ) min( ( ); )j t t jt    and approximately if 

necessary. Then j  are decreasing functions 

such that (0) 0j   and j   on ( ,0).  

By first case, we have  

( )( ) 2 max( ,2) ( )( ) .c m n m m c m n m

j jdd a A dd      
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Letting j  , we obtain

0

( )( ) 2 max( ,2) ( )( )

2 max( ,2) ( ) ( )

~ ( ) .

c m n m m c m n m

m m

m

m

dd a A dd

a A s s C s ds

e

       

 



 

 



    

    

 

 



 

So, once again ,max( , ) ( )m     W . 

The convexity of , ( )m  W  follows from the 

following: if ,, ( )m    W  and 00 1t   

then 

     0 0(1 ) .t t s s s              

As above, we can assume that (0) 0  , so we 
have 

0 0 0 0

0 0 0 0

0 0

( (1 ) )( ( (1 ) ))

( (1 ) )( ( (1 ) ))

( ) { } ( ) { }

1 1
2 max( ,2) [ ( ( ) )( ) ( ( ) )( ) ].

( ) ( )

c m n m

c m n m

j

m m

j m j m

m c m n m c m n m

t t dd t t

t t dd t t

A s s C s ds A s s C s ds

a A dd dd
j j

     

     

   

       









 

 

 

 

    

     

        

     





 

 
Letting j    this yields 

0 0 0 0

0 0

( (1 ) )( ( (1 ) ))

2 max( ,2) [ ( )( ) ( )( ) ]

2 max( ,2) [ ( ) ( ) ( ) ( ) ]

~ ( ) ( ) .

c m n m

m c m n m c m n m

m m m

m m

m m

t t dd t t

a A dd dd

a A s s C s ds s s C s ds

e e 

     

       

   

 





 

 

 

    

   

          

  



 

 

Finally, assume , ( )m  W . We can assume 

without loss of generality 0   and (0) 0  . 

Set : max( , )j j   . It follows from Lemma 

1 in [2] that  

0

0

( )( ) ( )( ) ( )

( ) ( ) .

c m n m c m n m

j j j j

m

m

dd s dd s ds

A s s C s ds

       

 


 





      

      

 


This shows that , ( )m  F .                                                                                         

 Corollary 3.3. Assume that the assumption 
of Proposition 3.2 is satisfied. Then the classes 

, ( )m  W  is a convex cone in , ( )m  F . 

Before coming to the following result, we set 

0( ) ( )t t   and for each 1k  , let 

1

0

( ) ( )

t

k kt x dx    . If  K  then it is easy 

to check that k K  and 

( )( ) ( ) ( )( )k k

kt t t t t   ˆ ˆ .  

 Finally, we give a new relationship 

between , ( )m  F   and , ( )
km  W class. 

Theorem 3.4. Let   be a m -hyperconvex 

domain in n  and 1 m n  . Assume that 

 K  such that ( ) 0, 0t t    . Then for 

 Ð , we have  

, ,

1

( ) ( ).
k

m

m m

k

  


  F W  

Proof.  In order to prove the Proposition, it is 
necessary and sufficient that there exists a 
constant ( )C C    such that
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( ) | | ( ) ( )( ) ,k c m k n m k c m n mu u dd u C u dd u      

 

   
                                 

holds for 
, ( )m  F . Indeed, we shall begin 

with showing that the (3.1) holds for 
0 ( )mu E

 
To do that,  we choose 0R   large enough 
such that 2 2|| ||z R  on  . We fixed 

0 ( )m E  and 0A   such that 
2 2|| || R Az    on  . Set 

2 2|| |max( ;| )h R Az    then 0 ( )mh E  and 
2|| ||c cdd h dd z    on  .  Then, we have 

the following estimates 

( ) | | ( ) ( )

( ) | | ( ) ( )

( )( ) ( ) .

k c m k c k n m

k c m k c k n m

c m k c k n m

k

u u dd u dd h

u u dd u dd h

u dd u dd h

 

 

 

 



 



 



 

  

 





ˆ

By integration by parts we have 

1

1

1 1

1 1

1( )

( )( ) ( )

( ) ( ) ( )

( ) [ ( ) ( ) ] ( )

( )( ) ( )

( ) ( )

c m k c k n m

k

c m k c c k n m

k

c m k c c c k n m

k k

c m k c k n m

k

c m k c k n m

kL

u dd u dd h

h dd u dd u dd h

h dd u u du d u u dd u dd h

h u dd u dd h

h dd u dd h

 

 

  

 

 

 



  



  



   



   





 

  

     

  

  











‖ ‖

( )
( )( ) .k c m n m

L
h u dd u 







 ‖ ‖

                                            Hence, if we set 
( )

||( ) ! ||k
L

hC C k  
    then 

2

( )( ) ( ) | | ( ) ( )

( ) | | ( ) ( )

( ) | | ( ) ( ) .|| ||

c m n m k c m k c k n m

k c m k c k n m

k c m k c k n m

C u dd u u u dd u dd h

u u dd u dd h

u u d zd u dd

   

 

 

  

 

 



 



   

  

  

 





 

Next, we prove (3.1) holds for , ( )mu  F . Indeed, we take 0 ( ),j m ju u u E  on   such that 

1

sup ( )( ) .c m n m

j j
j

u dd u  




    

By dominated convergence theorem and 2( |( |) )||c m k c n m k

jdd u dd z    is weakly convergent to 
2( ) | |( )| |c m k c n m kdd u dd z    in the sense of currents, we have 
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2

2

2

2

( ) | | ( ) ( )

liminf ( ) | | ( ) ( )

limi

|| ||

|| ||

|| ||nf ( ) | | ( ) ( ) ( )

sup ( )( ) ( ) .|| ||

k c m k c n m k

k c m k c n m k

j j j
j

k c m k c k c n m

j j j
j

c m c n m

j j
j

u u dd u dd

u u dd u dd

u u dd u dd h dd

C

z

z

z

u dd u d zd









  



  



 









 

  

   









 

Finally, the assertion of the Proposition follows from (3.1) and this completes the proof.  
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MỘT SỐ TÍNH CHẤT CỦA MỘT SỐ LỚP HÀM DELTA m-ĐIỀU HÕA DƢỚI  

                                      Vũ Tiến Thành1 , Dƣơng Mạnh Linh2 and Kaovangliayor Bounthanh  

1Trường Đại học Tây Bắc 
2Trường Cao đẳng Sơn La 

Tóm tắt:  Mục đích của bài báo này là giới thiệu một lớp hàm delta m-điều hòa dưới với năng 

lượng có trọng 
, ( )m  W . Đồng thời chúng tôi cũng chỉ ra lớp hàm đã đưa ra là một nón lồi, ổn 

định với phép toán lấy max và , ,( ) ( )m m    W F . Cuối cùng chúng tôi đưa ra một mối quan hệ 

giữa , ( )m  F  và các lớp hàm , ( )
km  W  với 1, ,k m  ..  

Từ khóa: Hàm đa điều hòa dưới, hàm m-điều hòa dưới, delta m-điều hòa dưới, miền m-siêu  
lồi, toán tử m-Hessian, toán tử Monge-Ampere, hàm trọng, m-dung tích. 

 

Ngày nhận bài: 23/03/2021. Ngày nhận đăng: 24/09/2021.  
Liên lạc: Vũ Tiến Thành, e - mail: thanhvumc115@utb.edu.vn 

  


