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Abstract: We consider differences of m-subharmonic functions in the energy class fm as a linear space,
and equip this space with a norm, depending on the generalized complex m-Hessian operator, turning the linear

space into a Banach spacedfm. Fundamental topological questions for this space is studied, and we prove that

5fm is not separable.
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1. Introduction and notations

Recently, to extend the domain of definition of this operator for plurisubharmonic
functions which are not neccessary to be locally bounded, in [5], [6] Cegrell introduced and
investigated the classes €, (). 7 (2).¢ (@).7 (2).€(2) on which the complex Monge-

Ampeére operator is well defined. He has developed pluripotential theory on these classes. To
extend the class of plurisubharmonic functions and to study a class of the complex differential
operators more general than the Monge-Ampére operator, in [2] and [9], the authors introduced
m-subharmonic functions and studied the complex Hessian operator. They also were interested in

the complex Hessian equations in ©" and on compact Kahler manifolds. Continuing to study the
complex Hessian operator for m-subharmonic functions which may be not locally bounded, in

recent preprint, Lu Hoang Chinh introduced the Cegrell classes 5;’(9),?rn Q) and € (Q)

associated to m-subharmonic functions (for details, see [8]) and has proved the complex Hessian
operator is well defined on these classes.

On the other hand, convex, subharmonic and plurisubharmonic functions are all convex
cones in some larger linear space. Given any such cone, k say, we can investigate the space of
differences from this cone sk . Such studies are often motivated by algebraic completion of the
cone, and differences of convex functions were considered by F. Riesz in as early as 1911. The
s - convex functions, or d.c. functions as they sometimes are denoted, were studied by Kiselman
[12], and Cegrell [4], and have been given attention in many areas ranging from nonsmooth
optimization to super-reflexive Banach spaces [7]. Thes -subharmonic where first given a
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systematic treatise in [1]. The class s -plurisubharmonic functions were studied by Cegrell [3],
and Kiselman [12], where the topology was defined by neighbourhood basis of the form

(UnPSHYy_(u~PSH) u aneighbourhood of the origin L}

loc”

In [13], we gave a subset of m-subharmonic functions, the subclasses 5¢°(@) and
§(SH, n L)) of §-sH_(2). In this paper we will give and study a subset of delta m-
subharmonic functions, 57 (). Let k be a hyperconvex domain in €" | then 57 () isa
convex cones in the linear space s7 (). Where s7 () denote the set of functions

ues’ (@) that can be written as u=u, —u,, where u, e 57 (). We will define a norm,

depending on the m-Hessian operator, for functions in this class and discuss some of the
topological questions that this norm raises.
For convenience we will denote the class of negative m-subharmonic functions on a

domain o by $* (), and as in [8] we will denote the class of bounded m-subharmonic
functions with boundary value zero and finite total m-Hessian mass by ¢° () .

For the notation of the so called energy class 7 () on a hyperconvex domain o we

refer to the paper [8]. As for now we remind the reader that the generalized complex m-Hessian
operator is well defined in 7 () and functions from 7_(«) has finite total m-Hessian mass.

2. Denefinition of the norm
Denefiniton 2.1. Let o be a hyperconvex set in ©". Assume that u e §7 () then we define

the norm of u to be:

||u|| = inf
m

¥ )
R | JHm(U1+U2)|
17Uz = LQ )

|
\

ul,uzefm (@)

| S ——

The following Lemma will be used repeatedly (see [10]).
Lemma 2.2. Suppose u,,u, € £°(Q),1< p,g<m and T = -hT,

e €°(Q) andwhere T, = dd°g, » "~ A dd°g A B"". Then

m-p-q

where h,g,,...,g

m-p-q
p q
j(dd°u1)p A(ddu,)T AT < [J'(dd°u1)’”q AT]”*q[I(ddmz)”*“ AT]P

Q Q Q

Remark 2.3. Note that for functions u < * we have |u|" = [H (u). To see this choose u, - 0

Q

in the infimum of the definition and hence ||u ||: < [H,, (u). Foran inequality in the other direction

Q

let u,,u, e 7 be any representation of u = u, - u,.
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Since u, <0 wehave u>u, -u, +2u, =u, +u,. It follows from Lemma 2 in [11], we have

that [H, (u)<[H (u,+u,) thus [H (u)s<|u]’

Next, we need some of the following results to prove the formula in Definition 2.1 is a
normon 57 ().

Lemma2.4.If 1 e

= [2lllull,-
m m

Proof. Let 4 > 0. From the definition, we have

”u:: inf J'H (u, +u,)

u,—u,=u

= inf J'Hm{%(u1+u2)j

= inf 'flanm(/iulJr/iuz)

up-u,=u

=247 inf [A7'H (Au;+2u,)=2"

up-u,=u

Hence 2 ||u ||m -

If 2 <0 wehave iu=-4(-u), and the same line of reasoning as above applies.
Lemma 2.5. Suppose is a hyperconvex domainin ©" and that u,ve 7 (), then
. B L v
U + V Vv
I

Proof. Take h < € and let us consider the left hand side in the inequality above.

2)

m

(m) m-j j
J'—hHm(u+v):2LjJJ'—h(dd°u) A(dd*v)

(m) V' j\ml
L J' hH (u) | | [=hH (V) |
o\ ) \a )
[ L L1
m ( \\m
i|f hH ) U—hHm(v)J I
e ’ ]

where the inequality comes from Lemma 2.2. Fix we @, and take h = max (k.gQ -1), where
g (z,w) is the pluricomplex Green function with pole at w , then h<€° and h > -1 on o

and the Lemma follows.
Now we are in a position to prove the triangle-inequality for 57
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Corollary 2.6. Suppose o is a hyperconvex domain in ©" and that u,ve 67, (), then

lu+v] < ul +|W
m m

m

Proof. Take & > 0, then there is u,,v, e 7 such that

( Vo
[ [H (o) <l e
\ )

Q

And

( \m
|IHm(v1+v2)\ <||v||m+g.
Lo )

According to Lemma 2.5 we have

( o m
m_28>|IHm(u1+U2)| +|IHm(V1+V2)|

Q Q

Jul, +Iv
m

1

( m

2|IHm(u1+u2+v1+v2)|
Lo

)
and furthermore, since u, +v, - (u, +v,)=u-v, u, +v, and u, + v, are two of the functions in the

set we take infimum over we have

( Am

|IHm(u1+u2+v1+v2)| 2||u+v||m

Lo
Hence ||u Y

<ol +v
m m

m

Lemma 2.7. If ||u||m -0, then u = 0.

Proof. Take > 0. Since u, e * suchthat [H, (u,+u,)<e.

Q

Take a sequence {v }e€°N¢ (f_z) ,such that v, > u +u, as j— ». Let g€’ be such that

H_(¢)=dv, where dV is the Lebesgue measure. According to Lemma 3.8 in [8], with
p = m, we have

IV, 1% = [(-v)"dV =[(-v)"H  (¢) < C&?

where c > 0 is a constant independent of j. Hence,
Hence

1

m m
lull<llu, +u, "< Ce?,

since |u |=lu, —u, |< -u, —u,.
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Letting ¢ > 0 we get |ju l..=0, and therefore we get that u = 0 almost everywhere w.r.t. dV.

The function u is m-subharmonic, hence u = 0 everywhere on Q.
3. One topology on 57 space

In this section, we will give some topological properties of s/ space. First of all, we
prove that s7_ is a Banach space with the norm in the previous section.

Theorem 3.1. (57 ||| ) is a Banach space.

Proof. Lemma 2.4 and 2.7, and Corollary 2.6 shows that (5% .|| ) is a normed vector space. It

remains to show completeness.
Suppose (u,) is a Cauchy sequence in s7 . For each integer k there is an integer n, such that

< 27" for p,q>n,.Wechoose the n,_'s suchthat n,_ >n

L

Up—Uq e

We have u, =u, +(u —un1)+...+(unk—un )). Since u_es/ for j=1,..k we can write

n, (k-1

u, —u, =¢—¢:,forg s’  where g7, 4 are chosen such that

( " m
=inf| [H (¢ +0°)| 2| [H, (¢,+¢])] -2
" ks{ Y ki Y

—j-1
u, -u,

i i-1

Then we have
o =t (800 ) or (8190 ) = 0+ (0] o 80) = (94 v 0.

1

k
Andsince Y ¢, S™ () is a decreasing sequence and

j=2

k
Thus 3 4 is an decreasing sequence of m-subharmonic functions with bounded total mass, and

j=2

k
in the same way Y ¢4 is. Therefore u ~is convergent to some ue s , and since u, is a

Cauchy sequence u, — u .
Lemma 3.2. 7 _is closed in the topology of 57 .

Proof. Choose a suitable sparse subsequence (u, ) ,then u, =u,+(u, —u,)+..+(u, -u_,),and

by the exact same reasoning as in the proof of completeness for s we getthat u, —» ue 7 .
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Proposition 3.3. The continuous functions are not dense in s7 . Furthermore s7  is not
separable.

Proof. Let us denote the Lelong number of u at x by v(u,x). The Lelong number at the origin
is of course a linear functional on all of s7 , furthermore v(u,0) is a continuous linear

functional on s 7, by Proposition 3.3 in [10], we have
(27v(u,x)) <H, (u)({x3), forue 7 .

On the other hand, for all functions u e S7 M€ we have v(u,0)=0, thus log|z|can not be

approximated by continuos functions in our topology. So that the continuous functions are not
densein s7 .
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MQT CHUAN m-HESSIAN CHO MOQT LOP HAM DELTA m-PIEU HOA DUOI
Vii Tién Thanh
Truwong Pai hoc Tay Bac
Tém tdt: Ching toi xét Iop ham 67 bao gom nhaing ham Ia hiéu cua hai ham thuge *  nhu mét khong
gian tuyén tinh, tir @6 chiing t6i trang bi mét chudn cho khdng gian nay théng qua dé do m-Hessian va chi ra véi
chan nay & fm la mgt khong gian Banach. Hon nita chiing t6i cling chi ra 5}-,“ la khéng gian khong tach dwoc.

Tir khoa: Hoi tu theo dung heong; Ham da diéu hoa dwdi; Ham m-diéu hoa duwdi; Toan tir m-Hessian; Toan
ti- Monge—Ampére; Mién m-siéu l6i; Pé do Radon; B¢ do duong.
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