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 Abstract: We consider differences of m-subharmonic functions in the energy class 
m

as a linear space, 

and equip this space with a norm, depending on the generalized complex m-Hessian operator, turning the linear 

space into a Banach space .
m

  Fundamental topological questions for this space is studied, and we prove that 

m
  is not separable.  

 Keywords: Convergence in capacity; plurisubharmonic functions; m-subharmonic functions; complex m-

Hessian operator; complex Monge–Ampère operator; m-hyperconvex domain; Radon measure; positive measures. 

1. Introduction and notations  

Recently, to extend the domain of definition of this operator for plurisubharmonic 

functions which are not neccessary to be locally bounded, in [5], [6] Cegrell introduced and 

investigated the classes 
0

( ) , ( ) , ( ) , ( ) , ( )
p p

      on which the complex Monge-

Ampère operator is well defined. He has developed pluripotential theory on these classes. To 

extend the class of plurisubharmonic functions and to study a class of the complex differential 

operators more general than the Monge-Ampère operator, in [2] and [9], the authors introduced 

m-subharmonic functions and studied the complex Hessian operator. They also were interested in 

the complex Hessian equations in 
n
 and on compact Kahler  manifolds. Continuing to study the 

complex Hessian operator for m-subharmonic functions which may be not locally bounded, in 

recent preprint, Lu Hoang Chinh introduced the Cegrell classes 
0

( ), ( )
m m
   and ( )

m
  

associated  to m-subharmonic functions (for details, see [8]) and has proved the complex Hessian 

operator is well defined on these classes.          

On the other hand, convex, subharmonic and plurisubharmonic functions are all convex 

cones in some larger linear space. Given any such cone, K  say, we can investigate the space of 

differences from this cone K . Such studies are often motivated by algebraic completion of the 

cone, and differences of convex functions were considered by F. Riesz in as early as 1911. The 

 - convex functions, or d.c. functions as they sometimes are denoted, were studied by Kiselman 

[12], and Cegrell [4], and have been given attention in many areas ranging from nonsmooth 

optimization to super-reflexive Banach spaces [7]. The -subharmonic where first given a  
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systematic treatise in [1]. The class  -plurisubharmonic functions were studied by Cegrell [3], 

and Kiselman [12], where the topology was defined by neighbourhood basis of the form 

    ,U U    U  a neighbourhood of  the origin 1

lo c
.L   

In [13], we gave a subset of m-subharmonic functions, the subclasses 
0

( )
m

   and 

( ) ( )
m

S H L


    of ( ) .
m

S H    In this paper we will give and study a subset of delta m-

subharmonic functions,   .
m

   Let K  be a hyperconvex domain in n  , then  m
   is a 

convex cones in the linear space  m
  . Where  m

   denote the set of functions 

 m
u    that can be written as 

1 2
,u u u  where   .

i m
u    We will define a norm, 

depending on the m-Hessian operator, for functions in this class and discuss some of the 

topological questions that this norm raises. 

     For convenience we will denote the class of negative m-subharmonic functions on a 

domain   by  m


 , and as in [8] we will denote the class of  bounded m-subharmonic 

functions with boundary value zero and finite total m-Hessian mass by  
0

m
  . 

For the notation of the so called energy class  m
  on a hyperconvex domain   we 

refer to the paper [8]. As for now we remind the reader that the generalized complex m-Hessian 

operator is well defined in  m
  and functions from  m

  has finite total m-Hessian mass.  

2. Denefinition of the norm  

Denefiniton 2.1.  Let   be a hyperconvex set in n . Assume that  m
u    then we define 

the norm of u  to be: 

 

 
1 2

1 2

1

1 2

,

in f

m

m

mm u u u

u u

u H u u
 


 

 
  

  
 
 
  

 . 

        

The following Lemma will be used repeatedly (see [10]). 

Lemma 2.2. Suppose 
0

1 2
, ( ),1 ,

m
u u p q m     and 

1
T h T   

 where 
0

1
, , , ( )

m p q m
h g g

 
    and where 

1 1
.

c c n m

m p q
T dd g dd g 



 
     Then 

1 2 1 2
( ) ( ) [ ( ) ] [ ( ) ] .

p q

c p c q c p q c p qp q p q
d d u d d u T d d u T d d u T

  

  

        

Remark 2.3. Note that for functions 
m

u   we have ( ).
m

mm
u H u



   To see this choose 
2

0u   

in the infimum of the definition and hence ( ).
m

mm
u H u



   For an inequality in the other direction 

let 
1 2
,

m
u u   be any representation of 

1 2
u u u  . 
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           Since 
2

0u 
 
we have 

1 2 2 1 2
2 .u u u u u u      It follows from Lemma 2 in [11], we have 

that    1 2m m
H u H u u

 

    thus  m
H u




m

m
u .  

Next, we need some of the following results to prove the formula in Definition 2.1 is a 

norm on   .
m

   

Lemma 2.4. If    then 
m m

u u  . 

Proof. Let 0  . From the definition, we have 

                            
1 2

1 2
in f

m

mm u u u

u H u u
 



    

                                  

 

 

 

1 2

1 2

1 2

1 2

1 2

1 2

in f

in f

in f

m
u u u

n

m
u u u

mn n n

m m
u u u

H u u

H u u

H u u u





  

     

 





 



  

 


 
  

 

 

  







  

Hence 
m m

u u  . 

     If 0   we have  u u    , and the same line of reasoning as above  applies. 

Lemma 2.5. Suppose  is a hyperconvex domain in n  and that  ,
m

u v   , then  

     

1 1
m

m m

m m m
H u v H u H v

  

 
    

     
 
   
  

    

Proof. Take 
0

m
h   and let us consider the left hand side in the inequality above. 

                  
0

m
m j j

c c

m

j

m
h H u v h d d u d d v

j



 

 
     

 
    

                                           

   

   

0

1 1

j
m j

m m
j

m m

j

m

m m

m m

m
h H u h H v

j

h H u h H v



  

 

    
      

     

 
    

      
 
   
  

  

 

  

where the inequality comes from Lemma 2.2. Fix w   , and take  m ax . 1h k g   , where 

 , wg z  is the pluricomplex Green function with pole at w , then 
0

m
h   and 1h   on   

and the Lemma follows. 

      Now we are in a position to prove the triangle-inequality for 
m

   
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Corollary 2.6. Suppose   is a hyperconvex domain in n  and that  ,
m

u v   , then  

m m m
u v u v    

Proof. Take 0  , then there is ,
i i m

u v   such that 

                                       

1

1 2

m

m m
H u u u 



 
   

 
   

And  

                                        

1

1 2

m

m m
H v v v 



 
   

 
 . 

According to Lemma 2.5 we have 

                                    

1 1

1 2 1 2
2

m m

m m mm
u v H u u H v v

 

   
        

   
    

                                                          

1

1 2 1 2

m

m
H u u v v



 
    

 
   

and furthermore, since  1 1 2 2
u v u v u v     , 

1 1
u v  and  

2 2
u v are two of the functions in the 

set we take infimum over we have  

 

1

1 2 1 2

m

m m
H u u v v u v



 
     

 
  

Hence 
m m m

u v u v   . 

Lemma 2.7. If 0,
m

u 
 
then 0 .u   

Proof. Take 0  . Since 
i m

u  such that  1 2m
H u u 



  . 

Take a sequence    
0

j m m
v   , such that 

1 2j
v u u  as j   . Let 0

m
   be such that   

( ) ,
m

H d V   where dV is the Lebesgue measure. According to Lemma 3.8 in [8], with 

,p m we have 

1

2| | | | ( ) ( ) ( )m

m m m

j j j mL
v v d V v H C 

 

       

where 0C   is a constant independent of  j. Hence, 

Hence             
1

2

1 2
|| || || || ,m m

m m

L L
u u u C     

since 
1 2 1 2

| | | | .u u u u u       
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Letting 0  we get || || 0 ,m
L

u   and therefore we get that u = 0 almost everywhere w.r.t. dV. 

The function u is m-subharmonic, hence u = 0 everywhere on Ω. 

3. One topology on 
m

  space 

 In this section, we will give some topological properties of 
m

  space. First of all, we 

prove that 
m

   is a Banach space with the norm in the previous section.  

Theorem 3.1.  , .
m m

  is a Banach space. 

Proof.  Lemma 2.4 and 2.7, and Corollary 2.6 shows that  , .
m m

  is a normed vector space. It 

remains to show completeness. 

Suppose  n
u  is a Cauchy sequence in .

m
  For each integer k  there is an integer 

k
n  such that 

2
n

k

p q
L

u u


   for ,
k

p q n . We choose the '
k

n s  such that 
1k k

n n


 . 

We have  
 

 
1 2 1 1

. . .
k k k

n n n n n n
u u u u u u



      . Since 
j

n m
u   for 1, ...,j k  we can write 

1

1 2

j j
n n j j

u u  


   , for 1 2
,

j j
   , where 1 2

,
j j

  are chosen such that  

   
1

1 1

1 2 1 2 1
in f 2

j j

m m

j

n n m m j j
m

u u H H   


 

 

   
        

   
   

Then we have  

                             
1 1

1 2 1 2 2 1 2 2

2 2 1 2
... ... ... .

n k n k k n k k
u u u                     

And since  
1

2

k

j m

j






   is a decreasing sequence and 

 

   
1

1 1 1

1 1 2 1 2

2 2 2

1 1

1 1

2 2

1
2 2 2 .

2 1
j j

m mk k k m

m j m j j m j j

j j j

k k
m m

j j j

n n mm
j j

H H H

u u

    



    

    

 

        
              

        

     



    

 

 

Thus 
1

2

k

j

j





 is an decreasing sequence of m-subharmonic functions with bounded total mass, and 

in the same way 
2

2

k

j

j





 is. Therefore 
k

n
u  is convergent to some 

m
u  , and since 

n
u  is a 

Cauchy sequence 
n

u u . 

Lemma 3.2. 
m

is closed in the topology of 
m

 .  

Proof.  Choose a suitable sparse subsequence  
'

m
u  , then    0 1 0 1

...
p p p

u u u u u u


      , and 

by the exact same reasoning as in the proof of completeness for 
m

  we get that 
p m

u u  . 
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Proposition 3.3. The continuous functions are not dense in 
m

 . Furthermore 
m

  is not 

separable. 

Proof.  Let us denote the Lelong number of u at x  by  , .v u x  The Lelong number at the origin 

is of course a linear functional on all of 
m

 , furthermore   u , 0v  is a continuous linear 

functional on 
m

 , by Proposition 3.3 in [10], we have 

      2 , { } ,
m

m
v u x H u x   for .

m
u   

On the other hand, for all functions 
m

u   we have  , 0 0v u  , thus log z can not be 

approximated by continuos functions in our topology. So that the continuous functions are not 

dense in 
m

 . 

REFERENCES 

[1] Arsove, Maynard G. (1953), Functions representable as differences of subharmonic 

 functions,  Trans. Amer. Math. Soc. 75, 327–365. 

[2] Błocki Z. (2005), Weak solutions to the complex Hessian equation. Ann Inst Fourier 

 (Grenoble) 55:1735–1756. 

[3] Cegrell, Urban (1978), Delta-plurisubharmonic functions, Math. Scand. 43(2) (1979), 

 343–352, 

[4] Cegrell, Urban (1978),  On the space of delta-convex functions and its dual, Bull. Math. 

 Soc. Sci. Math. R. S. Roumanie (N.S.) 22(70)(2) (1978), 133–139. 

[5] Cegrell, Urban (1998), Pluricomplex energy, Acta Math. 180(2) 187–217. 

[6] Cegrell, Urban (2004), The general definition of the complex Monge-Ampère operator, 

 Ann.  Inst.Fourier (Grenoble) 54  

[7] Cepedello Boiso, Manuel (2002), Two characterizations of super-reflexive Banach spaces 

 by the behaviour of differences of convex functions, J. Funct. Anal. 191(1) 1–16. 

[8] L. H. Chinh, On Cegrell's classes of m-subharmonic functions, arXiv 1301.6502. 

[9] Dinew S, Kołodziej S (2014), A priori estimates for the complex Hessian equations. Anal 

 PDE;7:227–244. 

[10] V. V. Hung and N. V. Phu (2017), Hessian measures on m-polar sets and applications to 

 the complex Hessian equations, Com. Var. and Elliptic Equations, 62 (8), 1135--1164. 

[11] V. V. Hung (2016), Local property of a class of m-subharmonic functions, Vietnam 

 Journal of Mathematics, 44(3) 603-621. 



55 

 

[12] Kiselman, Christer O. (1977), Fonctions delta-convexes, delta-sousharmoniques et delta-

 plurisousharmoniques, In Séminaire Pierre Lelong (Analyse), année 1975/76, pages 93 

 107, Lecture Notes in Math. 578. 

[13] Thanh. V. T and Dung. T. N (2018), Some remarks on δ -SHm(Ω) class, Hnue Journal 

 of Science (Natural Sciences 2018), Vol. 63, Issue 6, pp. 23-29. 

 

 

MỘT CHUẨN m-HESSIAN CHO MỘT LỚP HÀM DELTA m-ĐIỀU HÒA DƯỚI  

                                                        

Vũ Tiến Thành 

Trường Đại học Tây Bắc  

 

 Tóm tắt: Chúng tôi xét lớp hàm 
m

  bao gồm những hàm là hiệu của hai hàm thuộc 
m

  như một không 

gian tuyến tính, từ đó chúng tôi trang bị một chuẩn cho không gian này thông qua độ đo m-Hessian và chỉ ra với 

chẩn này 
m

  là một không gian Banach. Hơn nữa chúng tôi cũng chỉ ra 
m

  là không gian không tách được. 

 Từ khóa: Hội tụ theo dung lượng; Hàm đa điều hòa dưới; Hàm m-điều hòa dưới; Toán tử m-Hessian; Toán 

tử Monge–Ampère; Miền m-siêu lồi; Độ đo Radon; Độ đo dương. 

 


