
9 

 

TẠP CHÍ KHOA HỌC 

Khoa học Tự nhiên và Công nghệ, Số 16 (6/2019) tr. 9 - 26 

 

PHASE STRUCTURE OF BINARY ATOMIC BOSE-FERMI MIXTURE 

AT FINITE TEMPERATURE 

Nguyen Tuan Anh1, Đinh Thanh Tam2 

1 Electric Power University 
2Tay Bac University 

 

 Abstract: A variety of experimental realizations of binary atomic Bose-Fermi mixtures have brought 

opportunities for studying composite quantum systems with different spin-statistics. The binary atomic mixtures can 

exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By 

using a Cornwall-Jackiw-Tomboulis formalism to evaluate the grand partition function and thermodynamic grand 

potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range 

of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective 

potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 
4 0 8 7

K R b  

and 
6 8 7

L i R b  mixtures, we present the phase diagrams of the mixtures at zero and finite temperatures. 

 PACS number: 03.75.Mn, 05.30.Jp, 05.70.Fh, 05.70.Jk, 67.85.Hj, 67.85.Fg. 

1. Introduction 

After the successful experiments [1]-[7] a lot of new interesting phenomena of ultracold 

quantum gases have been discovered, both theoretically and experimentally, providing an attractive 

way to study many-body systems of atoms with short-range interactions. Owing to the technique 

of sympathetic cooling, Fermi gases to be cold efficiently by mixing them with bosons [8]. Hence, 

this has stimulated the investigation of Bose-Fermi mixtures.  

On the experimental side, after Bose-Einstein condensation (BEC) in ultracold atoms was 

observed, further developments to mix ultracold bosons and fermions with different spin-statistics 

have made. For example, binary atomic 6 Li and 7 Li mixtures was achieved in 2001 [9-10]. Then, 

other binary atomic Bose-Fermi mixtures have been produced, including 4 0 K and 8 7 Rb [11], 6 Li 

and 8 7 Rb [12], 8 4 Sr and 8 7 Sr [13], 6 Li and 4 1 K [14] [15], 6 Li and 1 3 3 Cs [16], etc. 

On the theoretical side, Bose-Fermi mixtures are of interest already at the mean-field level. 

Depending on the density of fermions and the value of the Bose-Fermi and Bose-Bose scattering 

lengths, a structural transition into phase separation is  exhibited if the Bose-Fermi repulsion is too 

strong [17]. In turn, for sufficiently strong attractive interactions, the mixture is  
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unstable. Signatures for a collapse have been observed experimentally [18]-[20] in the situation of 

the attractive Bose-Fermi interactions applied to the case of 4 0 K- 8 7 Rb mixtures. The control of the 

Bose-Fermi scattering length using magnetically tunable Feshbach resonances [21] opens the 

possibility to explore novel phases in Bose-Fermi mixtures with nontrivial many-body correlations. 

One interesting property of the binary atomic Bose-Fermi mixture is that at low 

temperatures, the bosons form BEC in a broken-symmetry phase while the fermions are in a 

normal, symmetric phase. The BEC transition adds additional features and challenges to the study 

of stable structures of Bose-Fermi mixtures. 

Continuing on the development of previous studies on the phase structures of BEC and 

binary BECs [22], [23], in this paper, we implement a theoretical framework capable of describing 

both bosons and fermions in a broad range of temperature and interactions to investigate the 

properties and phase structure of binary atomic Bose-Fermi mixtures. The framework is based on 

the effective action method for composite systems named as Cornwall-Jackiw-Tombolis (CJT) 

formalism from quantum field theory [24-25], which has been applied successfully to bosons [22-

27] and fermions [28-29], respectively.  

We remark that atomic Bose-Fermi superfluid-superfluid mixtures have also been studied 

further [30-31], in which, adding components of bosons, superfluids of fermions require two 

components to form the Cooper pairs, then the mixture requires at least three components of atoms. 

Here we focus only on binary boson-fermion mixtures, the theoretical framework will be 

generalized to superfluid mixtures based on the effective action method in the next paper. The 

effective action method for composite systems have given relevant studies, especially on phase 

transitions, of boson-boson mixtures (known as the binary Bose gases) [23], [32] and fermion-

fermion mixtures [33], [34]. However, the different spin-statistics make binary Bose-Fermi 

mixtures particularly interesting and challenging.  

Let us start from the following Lagrangian of a mixture of bosonic (b) and fermionic (f) 

atoms (in 1  units): 

2 2

* *

* * * 2 * * * *

(
2

£ ( , ) (1)
2 2

( , ) ( ) )( ) ,
2

b f

b f

b

b f f

i i V
t m t m

V


     


                  

  
 

     
              

   

 

where , }{  
 

 , ,
b

  ( )
f

  is chemical potential  , ( ) ;
b

m , ( )
f

m  - the mass of atomic Boson 

and Fermion; ,
b f

  , 
b f

  are the coupling constants: 

2
4 /

i i i
a m  , , ;

i
i b f a  are wave scattering lengths corresponding to collisions between atoms 

of the same type, 
b f

a is wave scattering length corresponding to collision between the other type; 

2
4 /

bf b f b f
a m  , with / ( )

b f b f b f
m m m m m   reduced mass. 
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Lagrangian (1) does change when replace the operator filed   by 
i

e

  and   by

i
e


 . That 

means Lagrangian is invariant with respect to transformation phase of the symmetric group Unita 

U(1)   U(1). Hence, if Lagrangian is broken spontaneous symmetry to U(1)   U(1) group, then 

two Boson Goldstone are produced according to the Goldstone theorem. 

We use hereafter the imaginary time formalism of Matsubara and work in Euclidean space-

time. The Feynman rules are the same as those at zero temperature, except that 

4 3

4 3

1
( ) ( , ) ( ) ,

( 2 ) ( 2 )
n

n

d k d k
f k f k f k




  

     

where 2 /
n

n    for boson, ( 2 1) /
n

n    for fermion, 1 / T  .  

In this work we show the results of 4 0 K- 8 7 Rb and 6 Li- 8 7 Rb mixtures, but the framework 

should be applicable to other binary Bose-Fermi mixtures as well. 

The paper is organized as follows. Section 2 outlines the CJT approach of binary atomic 

Bose-Fermi mixtures. It shows how to construct the thermodynamic potential, energy, pressure and 

the thermodynamic quantities. Section 3 shows how to identify phase structures from the self-

consistent equations of bosons and fermions. The phase diagrams and BEC for selected parameters 

at zero and finite temperatures are presented. Typical density profiles of the condensates are also 

presented. Finally, Section 4 concludes our work. The Appendix summarizes the integrals and 

approximations. 

2.  The CJT formalism and Goldstone restoration 

Assumed that the expectation of boson field has a non-zero value $\phi_0$, and there is a 

fermion pairing. Thus, by shifting 

0 0 1 2

* * * * * * * *

1
( ) ( 2 )

2

1
(3 )

f f

f

i     

             


           

    

       

 

we have a new Lagrangian 

1 1 2 4 * 2 2 2 2 2

0 0 0 0 0 1 1 2 1 2

* * * * 2 2 * *

0 1 1 2)

1
£ 2 ( ) ( )

2 2 2 8

2 ( ( )( ) ( 4 )
2 4

b b b

b

f

b f b f

f

i
D G

  
        



 
                

 

           

              

     

 

where we put 
1

2





 
   

 

 and
*









 
   

 

, the tree-level propagators in momentum space are 
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1

2

2

1

0
2

2

1

0
2

*

2
2 ; (5 )

2

2

( 2 1) . (6 )

2

b

b

b

b

b

f

f

f

f

f

k
M

m
D n T

k
M

m

k
i M

m

G n T

k
i M

m











 





 







 
  

 
 
 

 
 
 

 
     

 
  
 

     
 
 

 

with 

1 2

2 2 2

0 0 0
  3 

2

b f

b b b b b b f f


                    

Hence 

1 2

2 2

1 2

0

2
2

1 2 *

0

d e t 0 (7 )
2 2

d e t 0 (8 )
2

b b

b b

f

f

k k
D E

m m

k
G E

m





 







   
      

   

 
       

 
 

 

In tree-level approximation, 
0

£U   we have 

3

0 0

0

*

*

0 0

0 0

0 0 (9 )

b b

U

U

U


   











    

   


   


 

Inserting (9) into (7) and (8), it provides 

2 2 2 2

2 2 2

0 0

2 2

2 2

2 2 (1 0 )
2 2 2 2

( ) ( ) . (1 1)
2 2

b b b b

b b b b

f f f f

f f

k k k k
E E

m m m m

k k
E E

m m

   

 

   
        

   

    

 

In the case | | 1k  
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2

0
, (1 2 )

2

b

b

b

E k
m

 
   

associating with Goldstone bosons due to U(1)   U(1) breaking. 

 

The CJT effective potential 
0 0

( , , , )
C JT

V D G


   at finite temperature in the Hartree-Fock 

approximation is derived 

* 2 4 * 1 1

0 0 0 0 0

1 1 * 2 2

0 0 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1
( , , , , ) ln ( ) [ ( ; ) ] 11

2 2

3 3
ln ( ) [ ( ; , , ) ] 11

8 8 4

( )( ) , (1 3 )
4

{ }

{ }

C J T b

b

f

b b b

b f

f

V D G tr D k D k D

tr G k G k G P P P P

Q Q P P Q Q







    



  





 

 

          

       

   



  

where 

, ; , 1, 2 .
ij ij ij ij

P D Q G i j
 

     

The ground state in equilibrium is derived by  the minimization of  effective potential (13) 

*

0

0 , 0 , 0 ; (1 4 )

0 , 0 . (1 5 )

C J T C J T C J T

C J T C J T

V V V

V V

D G

  

 

  

  

 

 

  
 

 

 

(14) leads to the gap equations 

2
0 1 1 2 2 1 1 2 2

*

2 1

1 2

3
( ) 0 ,

2 2 2 2

,

; (1 6 )

b f b fb b

b

f

f

P P Q Q

Q

Q

  
 





    

  

  

 

and (15) leads to the Schwinger-Dyson (SD) equations for propagators 

1 1

0

1 1

0

, (1 7 )

, (1 8 )

D D

G G





 

 

  

  

 

in which 

where 
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1 1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2 2

1 2 2 1 1 2 2

2 1 1 1 1 2 2

3

2 2 2 2

3

2 2 2 2

4 4

. (1 9 )
4 4

b f b fb b

b f b fb b

b f b f

f

b f b f

f

P P Q Q

P P Q Q

Q P P

Q P

u

P









  

  

 


 


    

    

   

    

 

(18) clearly shows that the Goldstone theorem fails in the HF approximation. In order to restore it, 

let us invoke the method developed in [22], which in our case is achieved by adding a correction 

V  to C JT
V


, namely, 

( 2 0 )
C JT

C JT C JT
V V V  

    

where 

2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
( 2 ) ( 2 ) ( )( ) ( 2 1)

2 2 2

f b fC J T b
y zx

V P P P P Q Q Q Q P P Q Q


 
           

To satisfy the Nambu-Goldstone theorem, we choose 1 / 2x   , 1 / 2y  , and 1z   . Then we are 

led to the effective potential  

* 2 4 * 1 1

0 0 0 0 0

1 1 *

0 0

2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1
( , , , , ) ln ( ) ( ; ) 11

2 2

ln ( ) ( ; , , ) 11

3

8 8 4 4 4 2

( )( ) , ( 2 2 )
4

C J T b

b

f

f f fb b b

b f

V D G tr D k D k D

tr G k G k G

P P P P Q Q Q Q

P P Q Q







    





    



 

 

          
 

     
 

     

  

 


 

in which 
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2

*

1

2

2

*

1

2

* *

2

2

2

( 2 3 )

(

2

2 4 )

b b

b

b

b

f f

f

f f

f

k

m
D

k

m

k
i

m

G

k
i

m

 



 

 





 

    



 

 

 

 

 
 
 

 

 

 

 

    
 






 

 

with 

* 2

0 1 1 2 2 1 1 2 2

2

0 1 1 2 2 1 1 2 2

* 2

0 1 1 2 2 1 1 2 2

1 2

*

2 1

 

3
3 ,

2 2 2 2

3
0 ,

2 2 2 2

,
2 2 2 4 4

,

. ( 2 5 )

b f b fb b

b b b

b f b fb b

b b

b f f f b f b f

f f

f

f

P P Q Q

P P Q Q

Q Q P P

Q

Q

  
   

  
  

    
  





      

      

      

  

  

 

 

The new effective potential obeys three requirements imposed in [22]: (i) it restores the 

Goldstone theorem in the broken symmetry phase, (ii) it does not change the HF equations for the 

mean fields and (iii) it does not change results in the phase of restored symmetry. 

 

It is obvious that the dispersion relations received from 1
d e t 0D


  and 1

d e t 0G


  read 

2

* 2

2

*

2

2

( ) , ( 2 6 )
2 2

( ) | | , ( 2 7 )
2

b f

b b

f f

f

k k
E

m m

k
E

m





 

   

 

expressing  not only  the Goldstone theorem, but also the superfluidity  of condensates due to the 

Landau criteria [22] and, consequently, the speeds of sound in bose condensate read 
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*

2
 .

b

b

b
C

m


  

The dynamic instability takes place for bose condensate when its superfluidity is broken, that is 

when  the corresponding speed of sound and energy  become complex, namely, 

*
0 . ( 2 8 )

b
   

In studying the  phase structure  of  bose-fermi mixture the chemical potentials have been used as 

the control parameters, however  most experimental realizations of bose and fermi mixture in dilute 

atomic gases are based on  systems of  fixed particle numbers. Therefore in order to get an 

experimental relevance  it is necessary to determine the total particle densities and the condensate 

densities  of the processes considered in this work. To this end, let us begin with the pressure 

defined by 

0 0 at m in im um
( , , , ) (29)

C JT
P V D G


    

from which the total particle densities are derived 

(  o r  )
i

i

P
i  




 


 

yielding 

2

0 1 1 2 2

1 1 2 2

1
( )

2

, (3 0 )

b

f

P P

Q Q

 



  

  

 

and 

1 1

1 1

*

1 2

*

2 1

*
3 ,

  

 

2

0 ,
2

,
2 2

,

.

b f

b b b f b

b f

b b b f b

f b f

b f f b

f

f

b
P

P

Q

Q


     


    

 
   





    

    

   

  

  

 

Inserting (30) into (29) lead to 
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2 2 *

1 1 2

1 1 1 1

1

2 4 2

(3
1

ln ( ) ln ( ) .
2 2

2 )

f b fb

b f b f

f

b

b b

P

tr D k tr G k P P
 

 
   




 

 

     

    

 

Eq. (32) constitute the EoS governing all thermodynamical processes, in particular, phase 

transitions of the binary mixture, which is a two-component system with two conserved charges. 

In the following the formulae (22), (29), (30) and (32) will be widely employed in the 

numerical study of dynamical stability and phase structure of bose-fermi mixtures. 

3. Numerical study 

The main aim of this Section is to explore the phase transitions and their related phase 

structures based on the phase diagram in the ( ,T  )-plane. Then making use of this phase diagram 

we will prove that the binary bose-fermi mixture is featured by the following properties: 

1. Depending on the dynamical stability of the system we could observe one of the phases

0
( 0 , | | 0 )    , (

0
0 , | | 0    ), (

0
0 , | | 0    ) and a desert (

0
0 , | | 0    ). 

2. Where the dynamical stability be present, 0
b

M  , there the corresponding order parameter 

acquires a non-vanishing value, 
0

0  , therefore the corresponding symmetry U(1) is 

spontaneously broken, and there exists a condenstate of bose gas. 

3. The evolution of specific heat at constant volume  
V

C   versus T  (or  ) allows us to assert which 

scenario possibly exists in nature. 

We use values of the parameters for 4 0 K- 8 7 Rb and 6 Li- 8 7 Rb mixtures as given in Table 1. 

 

The numerical computation performed in the Appendix yields the self-enersies. The phase 

diagrams for repulsive ( 0
B F

a  ) and attractive ( 0
B F

a  ) Bose-Fermi interactions are shown in 

Fig.1 as a function of the boson and fermion chemical potentials.  In both cases, a qualitatively 

similar structure emerges: 
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The transition between the pure fermion and the phase where boson and fermions form a 

homogeneous mixture (mixed phase) is first order (thick solid red line). On the other hand, the 

transition between the pure boson and the mixed phases (thin solid black line) is second order, i.e. 

continuous. This transition coincides with the locus of points where the system first develops a 

Fermi surface, i.e., *
sign ( ) 0

f b f b
    , and therefore 0

f
   ( 0

f
  ) for repulsive (attractive) 

interactions. Finally, the transitions between the vacuum, corresponding to zero density of both 

fermions and bosons, and either the pure boson or fermion phases (thin solid black lines in Fig.1) 

are continuous, as they correspond to the filling of a band. Therefore, the first order line separating 

the pure fermion and mixed phases te rminates at the origin ( , ) (0 , 0 )
f b

    in a tricritical point 

(filled blue circle), where the first order transition becomes second order. 

 

Figure 1: (Color online) Zero temperature phase diagrams for a \emph{repulsive} ( 0
b f

a  , top 

panel) and \emph{attractive} 0
b f

a   (bottom panel) Bose-Fermi mixture where 
B

E r  is the boson 

recoil energy.  The thin solid black lines correspond to 2nd order (i.e. continuous) phase transitions 

between either the vacuum and the pure boson/fermion phases or between the pure boson and the 

homogeneous mixed phase. The thick solid (red) line corresponds to a first order transition between 

the pure fermion and the mixed phase. Second and first order lines meet at at the tricritical point at 

0
f b

    (filled blue circle). The region with finite boson density is the light gray shaded region. 

In both cases phase separation can only occur between a mixed and pure fermion phases. 

A first order transition in the phase diagram in chemical potential space implies that the 

system exhibits phase separation in density space, where, rather than fixing the chemical potentials 

f
  and ,

b
  one fixes the boson and fermion densities (see Fig.2). We obtain therefore that phase 

separation is only possible between pure fermion and mixed phases (dot-dashed black lines in 

Fig.2). This result, by the non-perturbative treatment of the boson interactions employed here, 

yields a first order transition between the pure fermion and mixed phases. 
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Figure 2: (Color online) Phase diagrams in the density plane ( , ) .
B F

n n  The corresponding phase 

diagrams in the chemical potential plane (not shown for brevity) display the same features and 

phase topology as the diagrams shown Fig.1 but for which the phase boundary in the density plane 

proved much harder to determine numerically.  The top panel corresponds to a repulsive Bose-

Fermi interactions, whereas in the bottom corresponds to attractive interactions. In both cases, the 

system can either be in a uniform mixed phase (lightly gray shaded region) or, by undergoing a 

first order transition, it can be in a phase separated state (dark gray shaded region), where a pure 

fermion and mixed phase coexist. The dot-dashed lines connect points on the first order boundary 

with the same values of the chemical potentials. 

Now let us discuss the numerical solutions of Eq. (29) obtained by using a stabilized 

iterative procedure. Since the function   has an axial symmetry, it suffices to consider a cross 

section of its energy gap at 0 .
y

k   Figure 3 presents typical examples of this cross section at fixed 

temperature. It is seen from Fig. 3 that the maximum of the energy gap is localized near the points 

(0 , 0 , ) ,
F

k  and the maximal energy gap monotonically decreases as temperature increases ([see 

the inset in Fig. 3 and Fig. 4. The energy gap in the p-phase vanishes at some critical temperature

.
c

T  The energy gap is a function of interaction constants and densities of the Bose- and Fermi-

gases. Figure 5 illustrates how the energy gap is affected by variation of the Bose-gas density. 

The non-trivial dependence of the maximal gap 
p

  on 
1
,

F
k


 at 0T   comes from the 

Bogolyubov dispersion relations (26) and (27) of the Bose gas. Such a dependence should be taken 

into account in the experimental observation of the p-wave superfluid state. 
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Figure 3: Typical examples of the energy gap   in the p-wave polar phase found numerically at 

different temperatures (A: 0 ,T   B: 0 .0 ,3
F

T T  and C: 0 .0 3 5
F

T T ). The inset presents the 

maximum of the energy gap as a function of temperature. Note that the energy gap vanishes at the 

critical temperature .
c

T  

 

Figure 4: The maximal energy gap as a function of temperature for different values of   indicated 

near the curves. The concentrations of bosons and fermions  are fixed as follows: 
1 4 3

1 0 .
B F

n n c m


   
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Figure 5: The maximal energy gap at 0T   as a function of 
1

F
k


 at 

1 4
1 0

F
n   cm 3  is plotted for 

different values of .  

4.  Conclusion and discussion 

A effective action framework for describing binary atomic Bose-Fermi mixtures has been 

presented here. By entering integrations of the bosons and fermions in the effective action and 

using the two-loop expansion to find the effective potential of the composite system, the nature of 

the mixture - phase separation transition can be visualized clearly as the free-energy curve 

intersects itself. The construction of phase separation is complicated by the compressibility of 

atomic gases, which differentiate this work from conventional liquid or solid mixtures. The phase 

diagrams presented here guarantees mechanical and diffusive equilibrium because the lever rule 

has been implemented. The framework is versatile and applicable to other binary atomic mixtures. 

We showed that a mixture of dilute ultracold bosonic and fermionic atoms provides a 

promising platform for the realization of the p-wave superfluid state. We derived a general set of 

the gap equations for the energy gaps in the s- and p-channels and the SD equations for the bosonic 

and fermionic propagators. It is found that the spin-induced interactions in a mixture of bosonic 

and fermionic atoms naturally suppress the s-wave pairing. At the same time the p-wave pairing is 

driven not only by density-induced interaction, but also by spin-induced interactions and it emerges 

even for repulsive interaction between fermions. While the dependence of the maximal value of 

the gap on temperature is a monotonically decreasing function, its dependence on the density of 

bosons 
B

n  is non-monotonous for sufficiently small values of the spin-spin bose-fermi interaction 

.  Such a dependence comes from the corresponding non-trivial dependence of the Bogolyubov 

dispersion relations on .
B

n  
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We hope that the results presented in this paper will stimulate experiments to observe the 

p-wave superfluid in a mixture of ultracold Fermi and spinor Bose gases. Moreover, the study of 

the p-wave superfluidity in a wellcontrolled environment of atomic physics could help to elucidate 

the properties of topologically non-trivial superfluids. 

Therefore, while the theory presented here offers an overview of binary atomic Bose-Fermi 

mixtures and captures the main features, future investigations with more complicated treatments 

will further improve the theoretical framework. 

Acknowledgments. This paper is supported by the Vietnam Ministry of Education and Training 

in the framework of the Scientific Research Project under Grant  B 2015-25-33. 
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      

/ /

1 1 1 1
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1 ,
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 





 


  
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  

and dimensional regularization integral with 3 2d    

   

   

2 / 2

, 2 / 2

/ 2 / 2
( ) ,

( 2 ) ( ) ( 4 ) / 2

d m d m n
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n m d d md p p M
I M

p M d n 

 
    
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  

  

for bosons we get with (
2 2

/ 2p k m ) 
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CẤU TRÚC PHA CỦA HỖN HỢP NGUYÊN TỬ HAI THÀNH PHẦN 

BOSE-FERMI Ở NHIỆT ĐỘ XÁC ĐỊNH 

Nguyễn Tuấn Anh1, Đinh Thanh Tâm2 

1Trường Đại học Điện Lực 
2Trường Đại  học Tây Bắc 

 

Tóm tắt: Nhiều các phát hiện thực nghiệm về hỗn hợp nguyên tử hai thành phần Bose-Fermi đã tạo cơ hội 

cho việc nghiên cứu các hệ lượng tử phức hợp với các số liệu thống kê spin khác nhau. Các hỗn hợp nguyên tử hai 

thành phần có thể thể hiện sự chuyển đổi cấu trúc từ hỗn hợp sang pha chia tách khi tương tác boson-fermion tăng 

lên. Sử dụng hình thức luận Cornwall-Jackiw-Tomboulis để tính hàm phân bố lớn và thế nhiệt động lực học, chúng tôi 

thu được thế hiệu dụng của hỗn hợp hai thành phần Bose-Fermi. Các đại lượng nhiệt động lực học trong một phạm vi 

rộng của nhiệt độ và tương tác cũng được rút ra. Quá trình chuyển đổi cấu trúc có thể được xác định là một vòng lặp 

của đường cong thế hiệu dụng và phần thể tích của pha chia tách có thể được xác định theo quy tắc đòn bảy. Đối với 

4 0 8 7
K R b  và hỗn hợp 

6 8 7
L i R b , chúng tôi biểu diễn các giản đồ pha của hỗn hợp tại nhiệt độ 0 và nhiệt độ 

hữu hạn. 

 


