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Abstract: A variety of experimental realizations of binary atomic Bose-Fermi mixtures have brought
opportunities for studying composite quantum systems with different spin-statistics. The binary atomic mixtures can
exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By
using a Cornwall-Jackiw-Tomboulis formalism to evaluate the grand partition function and thermodynamic grand
potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range
of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective

potential curve, and the volume fraction of phase separation can be determined by the lever rule. For “*K -°" Rb

and °Li-"" Rb mixtures, we present the phase diagrams of the mixtures at zero and finite temperatures.

PACS number: 03.75.Mn, 05.30.Jp, 05.70.Fh, 05.70.Jk, 67.85.Hj, 67.85.Fg.

1. Introduction

After the successful experiments [1]-[7] a lot of new interesting phenomena of ultracold
guantum gases have been discovered, both theoretically and experimentally, providing an attractive
way to study many-body systems of atoms with short-range interactions. Owing to the technique
of sympathetic cooling, Fermi gases to be cold efficiently by mixing them with bosons [8]. Hence,
this has stimulated the investigation of Bose-Fermi mixtures.

On the experimental side, after Bose-Einstein condensation (BEC) in ultracold atoms was
observed, further developments to mix ultracold bosons and fermions with different spin-statistics
have made. For example, binary atomic ° Li and " Li mixtures was achieved in 2001 [9-10]. Then,
other binary atomic Bose-Fermi mixtures have been produced, including *° K and *" Rb [11], °Li
and °" Rb [12], ** Srand *" Sr[13], °Liand “ K [14] [15], °Li and ***Cs [16], etc.

On the theoretical side, Bose-Fermi mixtures are of interest already at the mean-field level.
Depending on the density of fermions and the value of the Bose-Fermi and Bose-Bose scattering
lengths, a structural transition into phase separation is exhibited if the Bose-Fermi repulsion is too
strong [17]. In turn, for sufficiently strong attractive interactions, the mixture is
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unstable. Signatures for a collapse have been observed experimentally [18]-[20] in the situation of
the attractive Bose-Fermi interactions applied to the case of *° K- Rb mixtures. The control of the
Bose-Fermi scattering length using magnetically tunable Feshbach resonances [21] opens the
possibility to explore novel phases in Bose-Fermi mixtures with nontrivial many-body correlations.

One interesting property of the binary atomic Bose-Fermi mixture is that at low

temperatures, the bosons form BEC in a broken-symmetry phase while the fermions are in a
normal, symmetric phase. The BEC transition adds additional features and challenges to the study
of stable structures of Bose-Fermi mixtures.

Continuing on the development of previous studies on the phase structures of BEC and
binary BECs [22], [23], in this paper, we implement a theoretical framework capable of describing
both bosons and fermions in a broad range of temperature and interactions to investigate the
properties and phase structure of binary atomic Bose-Fermi mixtures. The framework is based on
the effective action method for composite systems named as Cornwall-Jackiw-Tombolis (CJT)
formalism from quantum field theory [24-25], which has been applied successfully to bosons [22-
27] and fermions [28-29], respectively.

We remark that atomic Bose-Fermi superfluid-superfluid mixtures have also been studied
further [30-31], in which, adding components of bosons, superfluids of fermions require two
components to form the Cooper pairs, then the mixture requires at least three components of atoms.
Here we focus only on binary boson-fermion mixtures, the theoretical framework will be
generalized to superfluid mixtures based on the effective action method in the next paper. The
effective action method for composite systems have given relevant studies, especially on phase
transitions, of boson-boson mixtures (known as the binary Bose gases) [23], [32] and fermion-
fermion mixtures [33], [34]. However, the different spin-statistics make binary Bose-Fermi
mixtures particularly interesting and challenging.

Let us start from the following Lagrangian of a mixture of bosonic (b) and fermionic (f)
atoms (in 7 = 1 units):
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wherey ={y..v 3}, u,. (u,) ischemical potential 4 ,(»);m,, (m,) -the mass of atomic Boson

and Fermion; 2,,4,, 4,, are the coupling constants:

A, =4x"%a Im,, i=b, f;a, are wave scattering lengths corresponding to collisions between atoms

of the same type, a,, is wave scattering length corresponding to collision between the other type;

A =47rh2a /' m

bf bf bf ?

with m,, =m, m, /(m, + m ) reduced mass.
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Lagrangian (1) does change when replace the operator filed 4 by e“¢ and  bye"y . That
means Lagrangian is invariant with respect to transformation phase of the symmetric group Unita
U(1) x U(1). Hence, if Lagrangian is broken spontaneous symmetry to U(1) x U(1) group, then
two Boson Goldstone are produced according to the Goldstone theorem.

We use hereafter the imaginary time formalism of Matsubara and work in Euclidean space-
time. The Feynman rules are the same as those at zero temperature, except that

4 -
I(z v f( k)—)—ZI f(wn,k)zj'ﬂf(k),

(27)°
where o = 2zn/p forboson, o, =z (2n+1)/p for fermion, g =1/7 .

In this work we show the results of ** K-*" Rb and ° Li-*" Rb mixtures, but the framework
should be applicable to other binary Bose-Fermi mixtures as well.

The paper is organized as follows. Section 2 outlines the CJT approach of binary atomic
Bose-Fermi mixtures. It shows how to construct the thermodynamic potential, energy, pressure and
the thermodynamic quantities. Section 3 shows how to identify phase structures from the self-
consistent equations of bosons and fermions. The phase diagrams and BEC for selected parameters
at zero and finite temperatures are presented. Typical density profiles of the condensates are also
presented. Finally, Section 4 concludes our work. The Appendix summarizes the integrals and
approximations.

2. The CJT formalism and Goldstone restoration

Assumed that the expectation of boson field has a non-zero value $\phi_0$, and there is a
fermion pairing. Thus, by shifting

. 1 .

¢4)¢0+¢:¢0+'\/2_(¢1+|¢2) (2)
. . . . . . . 1 .

AV, D Ay S A V’¢7‘/’¢AV’¢+/1_AA (3)

we have a new Lagrangian
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where we put o = |(¢1\| andy = (WZ\\ , the tree-level propagators in momentum space are
\2,) V)
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(12)

associating with Goldstone bosons due to U(1) x U(1) breaking.

The CJT effective potential v /" (¢,.1,,D,G) at finite temperature in the Hartree-Fock

approximation is derived

. 1 1 . 1 i .
vV, " (4,,A,A",D,G) = 7ﬂb¢j+?"¢o“+l—A A+;jﬂtr{ln D '(k)+[D,"(k;¢,)D] -1}
f
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where
Pii:.[/;Dii’ Qii:.[;;Gij; ij=12.

The ground state in equilibrium is derived by the minimization of effective potential (13)

cJT cJT CcJT
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(14) leads to the gap equations
Y A A Ao
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and (15) leads to the Schwinger-Dyson (SD) equations for propagators

D'=D"+12’, (17)

0
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in which
where
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(18) clearly shows that the Goldstone theorem fails in the HF approximation. In order to restore it,
let us invoke the method developed in [22], which in our case is achieved by adding a correction

AV tov,”", namely,

CcJT
CcJT cJT
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To satisfy the Nambu-Goldstone theorem, we choosex = -1/2, y =1/2,andz = —1. Then we are

led to the effective potential
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The new effective potential obeys three requirements imposed in [22]: (i) it restores the
Goldstone theorem in the broken symmetry phase, (ii) it does not change the HF equations for the
mean fields and (iii) it does not change results in the phase of restored symmetry.

It is obvious that the dispersion relations received from detb ™ =0 and detG ' = 0 read

S
E, = ( + ), (26)
2mb 2mb
k2 ., )
E, = [( +u) AL (27)
2m,

expressing not only the Goldstone theorem, but also the superfluidity of condensates due to the
Landau criteria [22] and, consequently, the speeds of sound in bose condensate read
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The dynamic instability takes place for bose condensate when its superfluidity is broken, that is
when the corresponding speed of sound and energy become complex, namely,

*

u, < 0. (28)

In studying the phase structure of bose-fermi mixture the chemical potentials have been used as
the control parameters, however most experimental realizations of bose and fermi mixture in dilute
atomic gases are based on systems of fixed particle numbers. Therefore in order to get an
experimental relevance it is necessary to determine the total particle densities and the condensate
densities of the processes considered in this work. To this end, let us begin with the pressure
defined by

cJT

P :_Vﬂ (¢0’V/0’D’G)atminimum (29)

from which the total particle densities are derived
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2, 2

N b
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Inserting (30) into (29) lead to
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Eqg. (32) constitute the EoS governing all thermodynamical processes, in particular, phase

transitions of the binary mixture, which is a two-component system with two conserved charges.

In the following the formulae (22), (29), (30) and (32) will be widely employed in the
numerical study of dynamical stability and phase structure of bose-fermi mixtures.

3. Numerical study

The main aim of this Section is to explore the phase transitions and their related phase
structures based on the phase diagram in the (7, » )-plane. Then making use of this phase diagram

we will prove that the binary bose-fermi mixture is featured by the following properties:

1. Depending on the dynamical stability of the system we could observe one of the phases
(¢, #0,]A1=0),(¢,=0,]A120), (4, =0,]A % 0)and adesert (¢, =0,]A|=0).

2. Where the dynamical stability be present, M, > 0, there the corresponding order parameter

acquires a non-vanishing value, ¢, =0, therefore the corresponding symmetry U(1) is
spontaneously broken, and there exists a condenstate of bose gas.

3. The evolution of specific heat at constant volume ¢, versus T (orx ) allows us to assert which
scenario possibly exists in nature.

We use values of the parameters for *° K-*" Rb and ° Li-*" Rb mixtures as given in Table 1.

Table 1: List of parameters of the experiments with “°K-*"Rb and °Li-*"Rb
boson-fermion mixture. The values are taken from [35]~[38].

Parameters WK —8"Rb SLi—%Rb
Mass ratio mg/my, 0.46 0.08
s-wave scattering length (bosons—bosons) 99 ay

s-wave scattering length (fermions—fermions) 174 ag

s-wave scattering length (bosons—fermions) + 284 ap

fermion energy kg x 1.5uK kp x 5uK

The numerical computation performed in the Appendix yields the self-enersies. The phase
diagrams for repulsive (a,, > 0) and attractive (a,. < 0) Bose-Fermi interactions are shown in

Fig.1 as a function of the boson and fermion chemical potentials. In both cases, a qualitatively
similar structure emerges:

17



The transition between the pure fermion and the phase where boson and fermions form a
homogeneous mixture (mixed phase) is first order (thick solid red line). On the other hand, the
transition between the pure boson and the mixed phases (thin solid black line) is second order, i.e.
continuous. This transition coincides with the locus of points where the system first develops a
Fermi surface, i.e., x| -sign(4,,)p, = 0, and therefore », >0 (u, <0) for repulsive (attractive)

interactions. Finally, the transitions between the vacuum, corresponding to zero density of both
fermions and bosons, and either the pure boson or fermion phases (thin solid black lines in Fig.1)
are continuous, as they correspond to the filling of a band. Therefore, the first order line separating

the pure fermion and mixed phases te rminates at the origin (x,,x,) = (0,0) in a tricritical point
(filled blue circle), where the first order transition becomes second order.

T T T T |
L 0.05 pUre boson mixture E
< f :
£ o
- vacuum pure fermion -
—0.05 L1 P N NS B
T i T T T T T T T i T T T
@m 0.05 pure boson mixture |
>
- vacuum pure fermion :
_005 Ly 1 PR I IR T
-4 -2 0 2 4 6 8 10
W./Ery,

Figure 1: (Color online) Zero temperature phase diagrams for a \emph{repulsive} (a,, >0, top

panel) and \emph{attractive} a,, <0 (bottom panel) Bose-Fermi mixture where Er, is the boson

recoil energy. The thin solid black lines correspond to 2nd order (i.e. continuous) phase transitions
between either the vacuum and the pure boson/fermion phases or between the pure boson and the
homogeneous mixed phase. The thick solid (red) line corresponds to a first order transition between
the pure fermion and the mixed phase. Second and first order lines meet at at the tricritical point at

u, = u, =0 (filled blue circle). The region with finite boson density is the light gray shaded region.
In both cases phase separation can only occur between a mixed and pure fermion phases.

A first order transition in the phase diagram in chemical potential space implies that the
system exhibits phase separation in density space, where, rather than fixing the chemical potentials

u, and u,, one fixes the boson and fermion densities (see Fig.2). We obtain therefore that phase

separation is only possible between pure fermion and mixed phases (dot-dashed black lines in
Fig.2). This result, by the non-perturbative treatment of the boson interactions employed here,
yields a first order transition between the pure fermion and mixed phases.
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Figure 2: (Color online) Phase diagrams in the density plane(n,.n, ). The corresponding phase

diagrams in the chemical potential plane (not shown for brevity) display the same features and
phase topology as the diagrams shown Fig.1 but for which the phase boundary in the density plane
proved much harder to determine numerically. The top panel corresponds to a repulsive Bose-
Fermi interactions, whereas in the bottom corresponds to attractive interactions. In both cases, the
system can either be in a uniform mixed phase (lightly gray shaded region) or, by undergoing a
first order transition, it can be in a phase separated state (dark gray shaded region), where a pure
fermion and mixed phase coexist. The dot-dashed lines connect points on the first order boundary
with the same values of the chemical potentials.

Now let us discuss the numerical solutions of Eq. (29) obtained by using a stabilized
iterative procedure. Since the function A has an axial symmetry, it suffices to consider a cross

section of its energy gap at k, = 0. Figure 3 presents typical examples of this cross section at fixed

temperature. It is seen from Fig. 3 that the maximum of the energy gap is localized near the points
(0,0,xk.), and the maximal energy gap monotonically decreases as temperature increases ([see
the inset in Fig. 3 and Fig. 4. The energy gap in the p-phase vanishes at some critical temperature
T.. The energy gap is a function of interaction constants and densities of the Bose- and Fermi-
gases. Figure 5 illustrates how the energy gap is affected by variation of the Bose-gas density.

The non-trivial dependence of the maximal gap A, on k., at T =0 comes from the

Bogolyubov dispersion relations (26) and (27) of the Bose gas. Such a dependence should be taken
into account in the experimental observation of the p-wave superfluid state.
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Figure 3: Typical examples of the energy gap A in the p-wave polar phase found numerically at
different temperatures (A: T =0, B: T =0.03T_, and C: T =0.035T_). The inset presents the
maximum of the energy gap as a function of temperature. Note that the energy gap vanishes at the
critical temperature T_.
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Figure 4: The maximal energy gap as a function of temperature for different values of s indicated
near the curves. The concentrations of bosons and fermions are fixed as follows:
3

14 -
n,=n_=10"cm ".

20



|
0.25 4
5
p=025¢, / p=0.225 c,
e 02 @
'_ "‘,
b 4
© ¥
%
0.15 o,
o @ y
> b= 0',,21(3“.,. o
9 )] _
o) -
8 0.1 /
g ' p=02c,
K
= L
X 005 B=0.175
1] e -~ -O—OO-6-6-6-p—¢ N e =0. Co
g o 6-0-6-6-6-6-6-o. i

12

Figure 5: The maximal energy gap at T = 0 as a function of k' at n, =10" cm ™ is plotted for

F

different values of .

4. Conclusion and discussion

A effective action framework for describing binary atomic Bose-Fermi mixtures has been
presented here. By entering integrations of the bosons and fermions in the effective action and
using the two-loop expansion to find the effective potential of the composite system, the nature of
the mixture - phase separation transition can be visualized clearly as the free-energy curve
intersects itself. The construction of phase separation is complicated by the compressibility of
atomic gases, which differentiate this work from conventional liquid or solid mixtures. The phase
diagrams presented here guarantees mechanical and diffusive equilibrium because the lever rule
has been implemented. The framework is versatile and applicable to other binary atomic mixtures.

We showed that a mixture of dilute ultracold bosonic and fermionic atoms provides a
promising platform for the realization of the p-wave superfluid state. We derived a general set of
the gap equations for the energy gaps in the s- and p-channels and the SD equations for the bosonic
and fermionic propagators. It is found that the spin-induced interactions in a mixture of bosonic
and fermionic atoms naturally suppress the s-wave pairing. At the same time the p-wave pairing is
driven not only by density-induced interaction, but also by spin-induced interactions and it emerges
even for repulsive interaction between fermions. While the dependence of the maximal value of
the gap on temperature is a monotonically decreasing function, its dependence on the density of

bosons n, is non-monotonous for sufficiently small values of the spin-spin bose-fermi interaction
p. Such a dependence comes from the corresponding non-trivial dependence of the Bogolyubov

dispersion relations on n,.
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We hope that the results presented in this paper will stimulate experiments to observe the
p-wave superfluid in a mixture of ultracold Fermi and spinor Bose gases. Moreover, the study of
the p-wave superfluidity in a wellcontrolled environment of atomic physics could help to elucidate
the properties of topologically non-trivial superfluids.

Therefore, while the theory presented here offers an overview of binary atomic Bose-Fermi
mixtures and captures the main features, future investigations with more complicated treatments
will further improve the theoretical framework.

Acknowledgments. This paper is supported by the Vietnam Ministry of Education and Training
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CAU TRUC PHA CUA HON HOP NGUYEN TU HAI THANH PHAN
BOSE-FERMI O NHIET PO XAC PINH

Nguyén Tuan Anh?, Pinh Thanh TAm?
YTruong Dai hoc Dién Luc
2Trirong Dai hoc Tay Bac

Tém tdt: Nhieu cac phat hién thuc nghiém vé hdn hep nguyén ti hai thanh phan Bose-Fermi da tao co héi
cho viéc nghién cizu cac hé lwong tir phirc hop véi cac so liéu thang ké spin khac nhau. C4c hdn hop nguyén ti hai
thanh phan c6 thé thé hién sw chuyén doi cdu truc tir hon hop sang pha chia tach kki tiong tdc boson-fermion ting
[&n. Stz dung hinh thic lugn Cornwall-Jackiw-Tomboulis dé tinh ham phan bé Ién va thé nhiés dgng lic hoc, ching toi
thu dwoc thé hiéu dung cia hon hop hai thanh phan Bose-Fermi. Céc dai lrong nhiét déng luc hoc trong mét pham vi
réng cua nhiét dg va twong tdc ciing dwoc rit ra. Qua trinh chuyén doi cdu truc cd thé dieoce xdc dinh 1a mgt vong lap
cua dwong cong thé hiéu dung va phan thé tich cia pha chia tach c6 thé duoc xdc dinh theo quy tdc don bay. Poi Véi

kK —* Rb vahdnhop °Li-"" Rb , chlng tdi biéu dién cac gidn do pha cua hon hop tai nhiét dé 0 va nhiér do
hizu han.
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