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TẠP CHÍ KHOA HỌC – ĐẠI HỌC TÂY BẮC
Khoa học Tự nhiên và Công nghệ 	

1. Introduction

During the 18th century, astronomers and 
mathematicians made great efforts to show 
that the observed deviations of planets and 
satellites from fixed elliptical orbits were in 
agreement with Newton’s principle of universal 
gravitation, provided that due account was 
taken of the disturbing forces exerted by the 
bodies on one another. The deviations are of two 
kinds: first, oscillatory motions with relatively 
short periods, i.e. periods of the order of a 
few years, and second, residual slow changes 
in the ellipse parameters, which changes may 
be non-oscillatory or may be oscillatory with 
very long periods, perhaps of the order of 
tens of thousands of years. The first kind are 
known as periodic inequalities, and may be 
accounted for as the response of a body to the 
periodic forces exerted on it by its neighbours’ 
continual tracing of their orbits. The second 
kind are called secular inequalities, and for the 
solar system the question arises as to whether 
the secular inequalities will build up over the 
millennia and destroy the system. In 1892, 
Lyapunov introduced the concept of stability of 
dynamic systems and created a very powerful 
tool known as the Lyapunov method in the study 
of stability. It can be found that the Lyapunov 
method has been developed and applied to 
investigate stochastic stability of the Itô-type 
systems, and many important classical results 
on deterministic differential equations have 

been generalized to the stochastic Itô systems; 
we refer the reader to Arnold [1], Friedman [2], 
Has’minskii[4], Kushner [5], Kolmanovskii 
and Myshkis [6]. Stability is the first of all the 
considered problems in the system analysis and 
synthesis of modern control theory, which plays 
an essential role in dealing with infinite-horizon 
linear-quadratic regulator, 2 /H H∞  robust 
optimal control, and other control problems; 
see  [3,7,8].

Compared with the plenty of results of the 
continuoustime Itô systems, few results have 
been obtained on the stability of discrete-time 
nonlinear stochastic systems. 

In this work, we study some types of 
stabilities in probability for the n-dimensional 
stochastic discrete-time system
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where 0
nu ∈�  is a constant vector. For any 

given initial value 0(0) nu u= ∈�  , ( )w t  is a one-
dimensional stochastic process defined on the 
complete probability space ( , , )F PΩ . We assume 
that (0, ( ), ) 0f w t t ≡  for all : { : }t I k k +∈ = ∈� , so 
(1.1) has the solution ( ) 0u t ≡  corresponding to 
the initial value (0) 0u = . This solution is called 
the trivial solution or the equilibrium position.

For convenience, we adopt the following 
notations:
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: { :| | }n
rD x x r= ∈ <� for 0r > ;

	 2 ( )C U : the class of functions twice 
continuously differential on U ;

	 a b∧ : the minimum of a and b. 

2. Preliminaries

In this section, we recall some results and 
notions related to stabilities in probability of 
Itô-type system (1.1).

Definition 2.1. A Lyapunov function for an 
autonomous dynamical system

:
( )

n ny
y g y

 →
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with an equilibrium point at  0y =  is a scalar 
function  : nV →� �   that is continuous, has  
continuous first derivatives, is locally positive-
definite, and for which  .V g−∇   is also locally 
positive definite. The condition that  .V g−∇   is 
locally positive definite is sometimes stated as 

.V g∇  is locally negative definite.

Definition 2.2. The trivial solution of (1.1) 
is said to be stochastically stable or stable in 
probability if, for every 0>  and 0h > , there 
exists ( , ) 0hσ σ= > , such that

	 {| ( ) | } 1 , 0,P u t h t< ≥ − ≥ 	

when | |u σ< . Otherwise, it is said to be 
stochastically unstable.

Proposition 2.3. If there exists a 
positive definite function 2( ) ( )rV u C D∈ , 

: { :| | }n
rD x x r= ∈ <� such that:

	 [ ( ( ))] 0,E V u t∆ ≤  		

for all ( ) ru t D∈ , then the trivial solution of  
(1.1) is stochastically stable in probability.

Proof.

By the definition of ( )V u , we have (0) 0V =  
and there exists Kϕ∈ , such that:

 	 ( ( )) (| |), .rV u t u u Dϕ≥ ∀ ∈ 	

For every (0,1)∈   and 0h > , no loss of 
generality, we assume that h r< . Because ( )V u  

is continuous, we can find that ( , ) 0hσ σ= > , 
such that:

	 ( ( )) ( ), .V u t h u Dσϕ≤ ∀ ∈         (2.1)

Clearly hσ < . We fix the initial value 
0u Dσ∈ . Let µ  be the first exit time of ( )u t  

from hD ; that is: inf{ 0 : ( ) }.ht u t Dµ = ≥ ∉  Let 
tτ µ= ∧ , for any 0t ≥ , we have:
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Taking the expectation on both sides, it is 
easy to see that

 	 0( ( )) ( ).EV u t V uµ ∧ ≤                (2.2)

If tµ ≤  and we note that 

 	 | ( ) | | ( ) |u t u hµ µ∧ = = , 

then:

	 { }( ) { } [ ( ( ))]
( ( )).

th P t E I V u
EV u t

µϕ µ µ

µ
≤≤ ≤

≤ ∧

From (2.1) and  (2.2), we have: { } .P tµ ≤ ≤   
Let t →+∞ , then we have { }P µ < ∞ ≤  , it 
means that:

 	 {| ( ) | } 1 , 0.P u t h t< ≥ − ≥

Therefore, the trivial solution of (1.1)  is 
stochastically stable. 

Definition 2.4. The trivial solution of (1.1)  
is said to be stochastically asymptotically stable 
in probability if it is stochastically stable, and 
for every 0> , there exists ( ) 0σ σ= > , such 
that {lim ( ) 0} 1 ,

t
P u t

→∞
= ≥ −  when | |u σ< .

Definition 2.5. The trivial solution of (1.1) 
is said to be stochastically asymptotically stable 
in the large in probability if it is stochastically 
stable, and {lim ( ) 0} 1

t
P u t

→∞
= = , for all 0

nu ∈� .

3. Main results

In this section, we prove some results about 
stochastically stable of system (1.1) by appling 
Lyapunov functionals method.
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Theorem 3.1. If there exists a function Kϕ∈  
and a positive definite function 2( ) ( )rV u C D∈ , 
such that 

[ ( ( ))] (| ( ) |),E V u t E u tϕ∆ ≤ −  

for all ( ) ru t D∈ , then the trivial solution of 
(1.1) is stochastically asymptotically stable in 
probability. 

Proof.

From Proposition 2.3, we have that the 
trivial solution of (1.1) is stochastically stable. 
Fix (0,1)∈  arbitrarily; then there exists 

0 0 ( ) 0σ σ= > , such that:

	
{| ( ) | } 1 ,

2 4
rP u t < ≥ −

                 (3.1)

here 
00u Dσ∈ .

Fix 
00u Dσ∈ . By the assumptions on function 

( )V u , we see that (0) 0V =  and there exist two 
functions 1, Kϕ ϕ∈ , such that: 	
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Let 00 | |uβ< <  and choose 0 ,α β< <  
0 η α< < small enough; because ( )V u  is 
continous, we see that 00 ( )σ σ σ< = < , such 
that:
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4
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(3.2)

Define the stoping times
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Choose θ  sufficiently large, such that: 
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4
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0t ≥ , we have:
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Taking the expectation on both sides, we 
have: 	 00 ( ( )) ( ) ( )( ).EV u V uτ ϕ α τ≤ ≤ −

Hence,
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This means that: { } 1rP αµ µ∧ < ∞ = . By 

(3.1) we have { }
4rµ < ∞ ≤
 . So
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Define the two stopping times
    rα αµ µ µ θ

σ
< ∧

= ∞ otherwise

if

inf{ :| ( ) | }.t x tβµ σ β= > ≥

We show that, for t θ≥ , 
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Due to (3.1)  and

 	 { } { }r tα βµ µ θ µ< ∧ ⊃ ≤ ,
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Combine with (3.2), we have: { }.
4

P tβµ≥ ≤
  

Let t →∞ , one gets:

   	       { }.
4

P βµ≥ ≤ ∞
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By (3.3), we have:
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This means that 

	
{limsup | ( ) | } 1 .

t
P u t β

→∞
≤ ≥ − 
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Because β  is arbitrary, then we have
 {lim ( ) 0} 1 .

t
P u t

→∞
= ≥ −   The proof is complete.

Theorem 3.2. If there exists a function Kϕ∈  
and a positive definite radially unbounded 
function 2( ) ( )rV u C D∈ , such that

 [ ( ( ))] (| ( ) |)E V u t E u tϕ∆ ≤ − ,

 for all ( ) ru t D∈ , then the trivial solution of 
(1.1) is stochastically asymptotically stable in 
the large in probability. 

Proof.

From Proposition 2.3, we have that the 
trivial solution of (1.1) is stochastically stable. 
Let (0,1)∈  arbitrary and fix 0u . Because ( )V u  
is radially unbounded, then we can choose  

0| |r u>  large enough, such that:

	
0

0

| | ,

4 ( )inf ( ) .
u r t t

V uV u
≥ ≥

≥


	            (3.4)

Define the stopping time 

	 inf{ 0 :| ( ) | }.r t u t rµ = ≥ ≥  

Taking the expectation on both sides, we see 
that for all 0t ≥ ,

	 0( ) ( ( ))rV u EV u tµ≥ ∧              (3.5)

From (3.4), we have:
0

0

4 ( )( ) ( ( )) { }.r r

V uV u EV u t P tµ µ≥ ∧ ≥ ≤


Combine with (3.5), we obtain:

 		  { } .
4rP tµ ≤ ≤
  

Let t →∞ ; we have { }
4rP µ ≤ ∞ ≤
 . It 

means that {| ( ) | } 1 , 0.
4

P u t r t≤ ≥ − ∀ ≥
  Similar 

to the proof of Theorem 3.1, we can obtain 

{lim ( ) 0} 1 .
t

P u t
→+∞

= ≥ − 

This implies that
 

{lim ( ) 0} 1
t

P u t
→+∞

= ≥ . The 
proof is complete.

4. Example

In this section, we give an application to the 
abstract results. Let ( )w t  be a one-dimensional 
stochastic process defined on the complete 
probability space ( , , )F PΩ , such that ( ) 0Ew t =  

and [ ( ) ( )] stE w t w s δ= , here stδ  is Kronecker 
delta.

Consider the following stochastic difference 
equation:	                  

      
( 1) [ ( ) ( ) ( )] ( )

( , ( )) ( ),
u t M t N t w t u t

K t w t u t
+ = +

=            
(4.1)

with ( ), ( )M t N t , and

,( , ( )) ( ) ( ) ( ) ( ( , ( )))i jK t w t M t N t w t k t w t= + =  

are all 2 2×  matrix-valued functions defined on 

0,1t = ,… and  0(0) nu u= ∈� . Assume that	                                    	
2

2
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1max | ( ,w( )) | ,
2i ji j
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∑

for all 2( )u t ∈� .

We define the Lyapunov function

	 2
1,2( ) max {| | }i iV u u== .

It is positive definite and radially unbounded. 
Moreover,
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×

∑

That is, [ ( ( ))] 0E V u t∆ < . By Theorem 3.2, the 
trivial solution is stochastically asymptotically 
stable in the large in probability.

5. Conclusion

In this paper we construct some notions and 
apply Lyapunov functionals method to study the 
stability of solution for nonlinear Itô stochastic 
discrete-time systems (1.1). After that, we give 
an application to the abstract results. 
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TÍNH ỔN ĐỊNH LYAPUNOV CỦA NGHIỆM ĐỐI 
VỚI HỆ ITÔ PHI TUYẾN 

Nguyễn Như Quân
Trường Đại học Điện lực

Tóm tắt: Trong công trình này chúng tôi nghiên cứu tính ổn định nghiệm của hệ ngẫu nhiên 
phi tuyến thời gian rời rạc. Trước tiên, chúng tôi giới thiệu một số định nghĩa liên quan đến tính ổn 
định của nghiệm. Sử dụng phương pháp hàm Lyapunov để chứng minh một số kết quả về tính ổn 
định ngẫu nhiên của hệ ngẫu nhiên phi tuyến thời gian rời rạc.

Từ khóa: Ổn định ngẫu nhiên, hệ Itô thời gian rời rạc, phương pháp hàm Lyapunov.
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