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Abstract: In this work we study the stability of solution for It6 nonlinear stochastic discrete-time systems. First,

we introduce several notions on stability of solutions. Second, by using Lyapunov functionals method we prove

some results about stochastic stability of solution.
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1. Introduction

During the 18th century, astronomers and
mathematicians made great efforts to show
that the observed deviations of planets and
satellites from fixed elliptical orbits were in
agreement with Newton’s principle of universal
gravitation, provided that due account was
taken of the disturbing forces exerted by the
bodies on one another. The deviations are of two
kinds: first, oscillatory motions with relatively
short periods, i.e. periods of the order of a
few years, and second, residual slow changes
in the ellipse parameters, which changes may
be non-oscillatory or may be oscillatory with
very long periods, perhaps of the order of
tens of thousands of years. The first kind are
known as periodic inequalities, and may be
accounted for as the response of a body to the
periodic forces exerted on it by its neighbours’
continual tracing of their orbits. The second
kind are called secular inequalities, and for the
solar system the question arises as to whether
the secular inequalities will build up over the
millennia and destroy the system. In 1892,
Lyapunov introduced the concept of stability of
dynamic systems and created a very powerful
tool known as the Lyapunov method in the study
of stability. It can be found that the Lyapunov
method has been developed and applied to
investigate stochastic stability of the Ito-type
systems, and many important classical results
on deterministic differential equations have

been generalized to the stochastic Itd systems;
we refer the reader to Arnold [1], Friedman [2],
Has’minskii[4], Kushner [5], Kolmanovskii
and Myshkis [6]. Stability is the first of all the
considered problems in the system analysis and
synthesis of modern control theory, which plays
an essential role in dealing with infinite-horizon
linear-quadratic ~ regulator, /,/ H,  robust
optimal control, and other control problems;

see [3,7,8].

Compared with the plenty of results of the
continuoustime It systems, few results have
been obtained on the stability of discrete-time
nonlinear stochastic systems.

In this work, we study some types of
stabilities in probability for the n-dimensional
stochastic discrete-time system

u(t+1)y= f(u(),w(),t),t>0

{U(O)=M0

where u, €l]” is a constant vector. For any

(1.1)

given initial value u(0)=u, €[] , w(¢) is a one-
dimensional stochastic process defined on the
complete probability space (Q2, F, P) . We assume
that /(0,w(¢),t)=0 forall te I :={k:kell"},so
(1.1) has the solution u(¢)=0 corresponding to
the initial value #(0) =0 . This solution is called
the trivial solution or the equilibrium position.

For convenience, we adopt the following
notations:
K = {p e C([0,+00);[0,+00)):
strictly increasing and ¢(0)=0}

29



D ={xell":|x|<r}for r>0;

C*(U): the class of functions twice
continuously differential on U ;

a A b : the minimum of a and b.
2. Preliminaries

In this section, we recall some results and
notions related to stabilities in probability of
[to-type system (1.1).

Definition 2.1. A Lyapunov function for an
autonomous dynamical system
-0

{y:D”
y =g(»)

with an equilibrium point at y =0 is a scalar
function V:0" —[ that is continuous, has
continuous first derivatives, is locally positive-
definite, and for which —VV.g is also locally
positive definite. The condition that —VV.g is
locally positive definite is sometimes stated as

VV.g is locally negative definite.

Definition 2.2. The trivial solution of (1.1)
is said to be stochastically stable or stable in
probability if, for every ¢ >0 and />0, there
exists o =o(e,h) >0, such that

P{lut)|<h}>1-¢,t>0,

when |ul<o . Otherwise, it is said to be
stochastically unstable.

there exists a
V(u)eC (D)),

Proposition 2.3. If
positive definite  function
D, ={xell":|x|<r}such that:

E[AV (u(2))] <0,

for all u(¢)e D, , then the trivial solution of

r

(1.1) is stochastically stable in probability.
Proof.

By the definition of V' (u), we have V' (0)=0
and there exists ¢ € K , such that:

V(u(®) 2 p(|u)).Yu e D,.

For every ee(0,1) and %>0, no loss of
generality, we assume that /4 < . Because V' (u)
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is continuous, we can find that o =o(¢,h) >0,
such that:

V(u(t) <ep(h),YueD,.  (2.1)

Clearly o<h. We fix the initial value
u,eD_ . Let u be the first exit time of u(z)
from D,; that is: u=inf{r>0:u(t)¢D,}. Let
t=unt, forany >0, we have:

V(u(unt) =V (u,) =V () =V(u(-1)
+V (=) =V (u(r=2))+...
+V(u(t, +1)) =V (u,)

= iAV(u(t)).

1=ty

Taking the expectation on both sides, it is
easy to see that

EV(u(unt) <V (u,). (2.2)

If <t and we note that

lu(unt)|=u()l=h,
then:
p(MPlu<ty<E[l,.V(u(n))]
SEV(u(unt)).

From (2.1) and (2.2), we have: P{u<t}<e.
Let t—+owo, then we have P{u<ow}<e, it
means that:

P{lu(t)|< h} =1-e,t>0.

Therefore, the trivial solution of (1.1) is
stochastically stable.

Definition 2.4. The trivial solution of (1.1)
is said to be stochastically asymptotically stable
in probability if it is stochastically stable, and
for every e >0, there exists o =o(e) >0, such
that P{liggu(t) =0} >1-¢,when |ul<o.

Definition 2.5. The trivial solution of (1.1)
is said to be stochastically asymptotically stable

in the large in probability if it is stochastically
stable, and P{%imu(t) =0}=1, forall u,ell".

3. Main results

In this section, we prove some results about
stochastically stable of system (1.1) by appling
Lyapunov functionals method.



Theorem 3.1. If there exists a functionp € K
and a positive definite function V(u)e C*(D,),
such that

E[AV (u()] < =Ep(|u(®)]),

for all u(¢)e D, , then the trivial solution of

(1.1) is stochastically asymptotically stable in
probability.

Proof.

From Proposition 2.3, we have that the
trivial solution of (1.1) is stochastically stable.
Fix €e(0,1) arbitrarily; then there exists
o, =0,(€)>0, such that:

r €
P{lu@t)|<=}=>1-—, 3.1
{u@| 2} 2 (3.1)

here u, €D, .

Fix u, € D, . By the assumptions on function
V(u), we see that V(0)=0 and there exist two
functions ¢,, ¢ € K , such that:

@ (lul) <V (u), E[AV (u(1))]
<-Ep(lu(?)|),YueD..

Let 0<pfB<u,| and choose

0<n<asmall

O<a<p,

V(u) is
continous, we see that 0 <o =o(e)<o,, such
that:

enough; because

V(1) < %(p(?]),v eD.. (3.2)
Define the stoping times

u, =inf{r>0:[u(r) < al,

m =inf{t20:|u(t) |z%}.

Choose 6 sufficiently large, such that:
P{u, <0}21—%. Let 7=u, nu nt, for all
t>0, we have:

V(u(z)) =V (uy) =V (u(z)) =V (u(r =1)n

+V(u(t-1)—V(u(r—-2))n
+o AV (ut, +1) -V (u,)

= iAV(u(t)) > 0.

Taking the expectation on both sides, we

have: 0<EV(u(r) <V (u,)—p(a)(T).

Hence,
Vi)
p(a)
= E()2 (0Pip, A, 21},

This means that:

2 E(u, ~p, A1)

P{/Lla/\/'ll<oo}:1 By

(3.1) we have {u, <o} Si. So

Pip, <o)+ Py, <o)+ Plu, <o}

ZP{/JQ /\/’lr <OO}:1’
it lead to: I—ESP{,ua < o0},

Pl <y A6 2 P(uP< 6} A {8 =o0)) © »
> P{u, <0}~ P, <}
>1 —ie.

(3.3)

Define the two stopping times
{ﬂa if u, <p NG
o=
o0

w, =inf{t > o[ x(1) 2 B}.
We show that, for t>6,

otherwise

EV(u(o nt))2 EV(u(u, A1)).
If o, > A6, note that

lupty A [Fu(o At) = u(®) =1,

E |:I{/1a <4ty NO} V(” (,Ua )):' >

th
- E [1 a0V U A t))]

Due to (3.1) and
{u, <p Oy {p, <t},
we have
0Pl B <E[ 1,V (W, n0)]
SEV(u(pu, A1)

Combine with (3.2), we have: %2 Plu, <t}.

Let t > o, one gets:
i > P{u, <o}
By (3.3), we have:
I—e<P{u, <p, A0} — P, <o}

<Plo<owo,u

5 =0}

This means that

P{limsup |u(t)|[< B} =1—e.
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Because f is arbitrary, then we have

P{limu(z) =0} >1—e¢. The proof is complete.

Theorem 3.2. Ifthere exists a function ¢ € K
and a positive definite radially unbounded
function V' (u) e C*(D,), such that

E[AV (@) <-Ep(u(®)]),

for all u(t) € D,, then the trivial solution of
(1.1) is stochastically asymptotically stable in
the large in probability.

Proof.

From Proposition 2.3, we have that the
trivial solution of (1.1) is stochastically stable.
Lete €(0,1) arbitrary and fix u,. Because V' (u)
is radially unbounded, then we can choose
r>|u, | large enough, such that:

inf V> L),

[u=r 1>t €

(3.4)
Define the stopping time
u =inf{t>0:|u(?) > r}.

Taking the expectation on both sides, we see
that for all >0,

V(uy) = EV(u(u, At)) (3.5)
From (3.4), we have:
V()= BV (u(p, )= 200 pyy <4y,
€

Combine with (3.5), we obtain:
Pl <t}<=
ﬂr - - 4 *

Let t—>o; we have P{u Soo}si. It
means that P{|u(z)|<r} Zl—i,w >(0. Similar
to the proof of Theorem 3.1, we can obtain
P{tlirg ut)=0}>1-e.

This implies that P{,lirfl u(®)=0}>1. The
proof is complete.

4. Example

In this section, we give an application to the
abstract results. Let w(¢) be a one-dimensional
stochastic process defined on the complete
probability space (Q, F, P), such that Ew(¢)=0

32

and E[w(t)w(s)]=0

., here o, is Kronecker
delta.

Consider the following stochastic difference
equation:
u(t+1)=[M@)+ N@O)wt)u(t)
=K (1, w(0)u(?),
with M (¢),N(t), and

4.1)

K(t,w(t))=M 1)+ N@O)w() = (k, ,(t,m(1)))
are all 2x2 matrix-valued functions defined on

t=0,1,...and u(0)=u, ell". Assume that
2
max £ (Z k.., &, W) [ J < %
: =

for all u(t)ell?.
We define the Lyapunov function
V(u)= max,_, , {ly, |2} .

It is positive definite and radially unbounded.
Moreover,

EV(u(t +1)) = max_, E(| ZZ:kU (&, w)u (1) |z)
smax,, E(Z k., (&, w(®) | Zlu,.(t) Izj
<max_, E[Z VQ_, (t,w(?)) |z)

Xmax E(I u (1) |Z)

<max _ E(Ju,()[)=EV(u(®).

Thatis, E[AV (u(2))]<0.ByTheorem 3.2, the
trivial solution is stochastically asymptotically
stable in the large in probability.

5. Conclusion

In this paper we construct some notions and
apply Lyapunov functionals method to study the
stability of solution for nonlinear It stochastic
discrete-time systems (1.1). After that, we give
an application to the abstract results.
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TiINH ON PINH LYAPUNOV CUA NGHIEM POI
VOI HE ITO PHI TUYEN

Nguyén Nhw Quéin
Truong Pai hoc Dién luc

Tém tiit: Trong cong trinh ndy ching t6i nghién ciru tinh én dinh nghiém ciia hé ngdu nhién
phi tuyén thoi gian roi rac. Truce tién, ching téi gidi thiéu mét sé dinh nghia lién quan dén tinh 6n
dinh cia nghiém. Sir dung phirong phdp ham Lyapunov dé chimg minh mét so két qua vé tinh on
dinh ngdu nhién cia hé ngau nhién phi tuyén thoi gian roi rac.

Tir khéa: On dinh ngdu nhién, hé Ité thoi gian roi rac, phwong phdp ham Lyapunov.
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