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Abstract: Equilibrium problems appear frequently in many practical problems arising from, for instance,
physics, engineering, game theory, transportation, economics and network. They have become an attractive field
for many researchers in both theory and applications. The paper concerns with some methods for finding an
approximate solution of equilibrium problems.

Using theoretical development methods, we present two new outer approximation algorithms for solving
equilibrium problems on a convex subset C, where the underlying function is Lipschitz-type continuous and
pseudomonotone. The algorithm is to define proximal point subproblems or projector point subproblems on the
convex domains C, >C, Cp, < C, ﬁfzo C, =C, k=0,1,... The strongly convergent theorems are established
under standard assumptions imposed on cost mappings.
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1. Introduction

Let C be anonempty closed convex subset
of R .
algorithms for finding a solution of equilibrium
problems (shortly EP):

We present outer approximation

Find x" € C such that f(x",y)>0, VyeC.
(EP)

Theareaofequilibrium problemshasattracted
attention of researchers from applications
in physics, engineering, game theory,
transportation, economics and network ([1-
9]). problems are models whose formulation
includes optimization, variational inequalities,
multi-objective optimization problems, fixed
point problems, saddle point problems, Nash
equilibria and complementarity problems
11]). Recently,
researchers have presented some methods to

solve EP(f, C) with a monotone bifunction f.

as particular cases ([5, 7,

In [5], the authors used projection methods.
The interior quadratic regularization methods
is presented in [1,2]. In [4,12], the interior
quadratic regularization technique hasbeen
used to develop proximal iterative algorithm
for variational inequalities. In [3], P.N. Anh, T.

Kuno used a cutting hyperplane method for
pseudomonotone equilibrium problems. In this
paper we present two new outer approximation
algorithms for solving equilibrium problems on
aconvex subset C. The first algorithm is to define
proximal point subproblems on the convex
c,oC, n,C =C, C,cC,
k=0,1,..., which forms a generalized iteration

domains

scheme for finding a global equilibrium point.
The second algorithm is to define projector
point subproblems on the convex domain,
which forms a generalized iteration scheme for
finding two projector points on the C, .

The paper is organized as follows. In sections
2 we review some definitions and basic results
that will be used in our subsequent analysis.
Section 3, will present two outer approximation
algorithms for solving equilibrium problems on
a convex subset C and prove convergence of the
algorithms.

2. Preliminaries

This section contains some definitions and
basic results that will be used in our subsequent
analysis. We first state the formal definition of
some classes of functions that play an essential
role in this paper.
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Let C be a nonempty closed convex subset
of areal space R". A bifunction f:CxC —>R"
is called to be

(i) p -strongly monotone, if

S+ (xS \x=y \ Vx,yeC;

(ii) monotone, if

S+ f(y,x) <0 Vx,yeC;

(iii) pseudonomotone, if f(x,y)>0 thi
f(y.x)20,Vx,yeC

(iv) Lipschitz-type continuous with constants
¢, >0 and ¢, >0 ([8]), if

S+ f(0,2)2 f(x,2) = o x— 38"

—Cpo y—24° W, y,z€C.

Lemma 2.1. ([13]) Let {a'}, {b*} and {c*}
be the three positive real numerical satisfying

the following conditions.

a,,<(1+b)a,+c,,Vnz0, an < 400,
n=0

00
Y ¢, <+w. Then, lima, exists.
n=0

3. Outer approximation algorithms

In this section, we present new outer

approximation  algorithms  for  solving

equilibrium problems on a convex subset C.
Its convergence analysis is postponed. We first
state the assumptions that we will assume to
hold through the rest of this paper.

Assumption:
(Al) f is pseumonotone on R"

(A2) f satisfies Lipschitz-type condition on
R" with two constants ¢, and c, .

(A3) f(x,.) is convex and subdifferentiable
on R" for every fixed xeR".

(A4) 1 islower semicontinuous on R" xR" .

3.1 Algorithm 1

Initialization: Choose the sequence C, such
that C, oC, n,_,C,=C, C,,, cC,, k=0,1,..

, x* eintC , positive sequences A, [Iteration k:
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Find x*"' e C,

/lk[f(xkax)_f(xkaxk+])]+f(xk7x)
—<xk” —x*, X —x>20,VxeCk+1. (1)

Lemma 3.1.1. {C,}
of closed convex subsets of R" such that

We fix sequences

C..cC,n_,C =C.Let {xk} be a sequences
generated by Algorithm 1. If x" is a solution of
EP(f, C) satisfying x" is a solution of problems
EP(f,C,) forall k=0,1,... then

* 1 *
k+1 —x ||2S—||xk —x ||2
1-24c,
_ 1_2/1]\'01 ||xk+1 _xk ||2

1-24c,

Il x

b

where A, < min{L,L} forall k=0,1,....
2¢, 2c,
Proof. Since f(x,y) Lipschitz-type on R"
with two positive constants ¢,,c,, 1.€.,
f(x’y)+f(ysz)2f(xsz)_cl ||X—y||2 (2)
—¢lly-zIF, Vx,p,zeC,

It is equivalent to
ANICR S ENICIR AR I EVATICae
k k+1 112 k+1 *112 (3)
to llx x4 (]2 —x ]

Since x" € Sol(f,C,,,) forall k=0,1,... and
f(x,y) is pseudomonotone on R" we have
(x5, x) <0, f(xX,x)<0. 4)

From (2), (3) and (4), it follows that
xk+l _xk’xkﬂ _X* < ﬂ, c Xk _xk+1 2
( )< Al [

+o | =X L

On the other hand,

k+1 k+1 _xk ||2

—x" Pt =X -

k+1 k k+1 *
+2<x+ —x",x =x >

[

(6)

This together with (5) implies that

(1-22,¢) | =" Pl x|

—(1-24,6) | F X P

So, we obtain

1 =2 P x|
1-24c,
_ 1_2)’1{01 ||xk+1 —x Hz I
1-24c,



Theorem 3.1.2. Let {xk} be a sequences

generated by Algorithm 1, 0 < 4, <min {%,L}
+o0 (& c,

and Y A, <+o. If there exists x" € C such that
k=1

x" is a solution of problems EP(f,C,) for all

k=0,1,.... Then {xk} is weakly convergent to x .
Proof. By Lemma 3.1.1, we have
. 1 .
[ =" P ————Ix* =",
1-24c,
or,
[ =X P (T e )l 6" =7,
24.¢ . <
where o, =——2—. Since Y 1, <+, we
have TG =
<& 24,c¢,

Zak Zl e < 40,

k=1 k=1
By Lemma 2.1, the sequence || x*—x"| is
convergence, and so {x} is bounded. Thus,
there exists a subsequence {x"} converging
to x. From (1) and (3), it follows that

<xk"+l —xk,xk’+1 —x*>s/1 ,[f(xk"+1,x*)+

R [N P N EF A G W
From (6) and (7), it follows that

(1=22, &) |67 =x" [P +(1 =22, ) | 2" =] |
=1 =X P22, FGNT AT+ S ).

Using f(.,y) is continuous, let j —> o, we
obtain f(X,x")>0. By the monotonicity of f
and x” eSol(f,C,), we conclude that

0< f(x',x)<0.
It follows that x =X
3.2 Algorithm 2

Initialization: Choose the sequence C, such
that C, oC, N ,C, =C, C,,, cC,

0 .
. x eintC

, positive sequences {4, } .

Iteration k:

y —argmln{/if(x",y)+ y—x'y }T

yeCy

—argmln{/lf(y y)+ > y-x'y }

yeCy

Lemma 3.2.1. We fix sequences {C,} of
closed convex subsets of R" such that C = C,,
and C,,cC,Vk=0,12.,n_C =C. Let
{ } be a sequences generated by Algorithm
(2). If x" is an solution of (EP) satisfying x°
is a solution of problems EP(f,C,) for all

k=0,1,... then
[ =T Pt =T | == 24,0 |2 = "]
—(1=240)[[x" =y" I,
forall £=0,1.....

Proof. Since

" =argmin{, (" y)+—||y bl

xeCy,
we have

0eo (/1 fO! ,y)+—||y X )( )
+ch(x’”').

Thus, there exist wed,f(y",x""") and

we N.(x*'") such that
Aw+x™ =X +w=0.

Hence, it follows from the definition of N,
that
</1kw+xk —x*,x— xk+'> A <w,x—xk+1>—

<x"+1 —x* X —x>2 0, VxeC,.
So,

k+1 k k+1 k+1
<x T xt X —x>£lk<w,x—x +>

VxeC,. (8)

By wed, f(»*,x"""), we have

<W,x_xk+1> < f(yk,x)_f(yk’xkﬂ),
VxeR'. )
From relations (8) and (9), we obtain
A (fOM - FO A2 10
<xk+1 —x*, X —x>,Vx eC,.

Since x" € C,, we have
<xk+1 _xk,xk+1 _x*> <
AR = FOh ]
Since x e€Sol(f,C,) and  f(x,y) is
pseudomonotone we have f(y*,x")<0.

This together with (10) implies that
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<xk+1 _xk’x* _xk+1>2/1kf(yk,xk+l) (11)

Since f(x,y) Lipschitz-type on R with
two positive constants ¢,,c, , 1.€.,

Sy + f(y.2) 2 f(x,2) -
o llx=yIF e, lly=zIF,vx,p,z.

Appying above inequality with
x=x"y=y" z=x"" we have
SOSRE = )
= [y =P =, I =y P

This together with (11) implies that
<xk+1 _xk’x* _xk+l> > ﬂk[f(xk,xk” _

FEY)=a |y =2 P =[x =y ).
(12)

Since

. 1
Y= argmm{ikf(xk,y)+—o y—x'y 2},
yeCy 2
by an argument similar to the above, we
obtain

(V' =xt =y 4 [ LG - FR N ],
Vy € C,. Appying above
inequality with y =x"", we get
<yk _xk,yk _xk+1>2}’k [f(xk,xkﬂ)_f(xk,yk)]
This together with (12) and

k+1 k+1 _xk ||2

—x" [Pl =X -l x

1 k+1 *
4—2<x"+ —xF,x —x >,

[E:

implies that
[ =X =l =X P = x>
2(y" —x = y) =20 | ¥ =X P

=2, || X" =y P
So that,
R e R el
—2<yk —x " —xk”>+2012,k |y —x* |
+2¢,4, || X =y |
S B e T U R Ca il
—2<yk —xt,y* —xk”>+2cl/1k |y = x|
+2¢,4, || X =y P
S5 —x P =1 =240 [y x|
—(1=22) [ X =" P
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Theorem 3.2.2. Assume that (A,)-(A,)
hold, sequence {4, } satisfies klim A=A

O<p<4 < min{i,;
2cl 2(cz _7)
exists x eC such that x* is a solution of
problems EP(f,C,) for all k=0,1,.... Then

{x"} is weakly convergent to x.

}, and there

Proof. Using the assumption of {4}, we
have 1-24,¢, >0 and 1-24.c, >0. By using
Lemma 3.2.1, we obtain

|2 —x" <] x* = x|,V k> 0.

It follows that {||x* —x"||} is nondecreasing
bounded by
klim | x* —x" ||=c <+ . Hence, the {||x* —x" ||}

and lower 0, and so

is bounded and there exists a subsequence {x"'}
converging to x. Since C,,, cC, Vk=0,1,2...
and N ,C, =C, it is easily to check that x e C
. By using Lemma 3.2.1, we get

(1-2p¢) |y —2* P 1-246) |1 2 IF

SR e E s 2 [
Due to 1-2pc, >0 and kli}/ﬁcHXk -x |=c,

it follows that lim ||x* =" |=0. This implies

that {y"} convergent to x because {x"}

convergent to x . On the other hand

i :argmin{/"tkif(xk",y)+%o y—xkfi?z}.
C J

vely;

Since f is lower semicontinuous on CxC
, letting j — 4o yields

f:argmin{lf(f,y)+% \y—-x \z:yeij}.

It follows that x is a solution of problems
EP(f.C,) for all j=0,1,... and a solution of
the problem (EP) (because CcC, ). From
Lim |x =x"|l=¢ and replacing x" by ¥ we

have ¢ = lim || x" =X ||=0.
k—>+o0

Hence, the {x*} convergent to X.
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CONCLUSIONS

we present two new outer approximation
algorithms for solving equilibrium problems
on a convex subset C with the cost function
fxy) s
Lipschitz-type condition on R”

pseumonotone and  satisfies
with two
constants ¢, and c,. The algorithm is to define
proximal point subproblems or projector point
subproblems on the convex domains C, oC,
Ci1 €Cy, My C, =C, k=0,1,... Under standard
assumptions imposed on cost mappings we
obtained strongly convergence theorem of the

algorithms.
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THUAT TOAN XAP Xi NGOAI GIAI BAI TOAN CAN BANG

Tréan Vin Thing’, Nguyén Minh Khoa
Truong Pai hoc Dién luc

Tém tit: Gan day, cdc bai todn cdn bang dwoe vmg dung mot cach rong rdi va hiéu qud trong
nhiéu linh viee thiee té, nhw vt Iy, ky thudt, 1y thuyét tro choi, giao théng, kinh té va mang internet.
Bai todn da thu hit nhiéu nha khoa hoc tham gia nghién civu ca vé 1y thuyét lan irng dung. Bai bdo
nay quan tam nghién ciru phirong phdp tim nghiém xdp xi ciia bai todn can bang. Sir dung phwong
phdp phdt trién 1y thuyét, ching t6i dwa ra hai thudt todn xdp xi ngodi tim nghiém gan ding ciia
bai todn cdn bang trén tdp con 16i C véi gdi thiét ham gid la lién tuc kiéu Lipschitz va gia don diéu.
Thudt todn dwoc xdc dinh béi cdc ddy cdc bai todn diém gan ké hay bai todn tim diém chiéu trén
cde mién 16i C, 2C, C,,, =C,,Nr,C, =C, k=0,1,... Véi cdc gia thiét co ban ciia ham gid, chiing

toi da thu cdc dinh Iy hoi tu manh cua cdc thudt toan trong bai bao.

Tir khoa: Bai toan cdn bang,; Bai toan diem gan ké; Gia don di¢u, Lién tuc kiéu Lipschitz,
Thudt toan xap xi ngoai.
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