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Abstract: In this paper, we will present a subset of delta m-subharmonic functions, 5‘7:;" (Q), p=0. we
then equip one topology for this space and prove that the vector space 5.7;” is a locally convex topological space

and a Frechet space as well.
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1. Introduction

The
(dd°.)" is well defined over the class of locally

complex Monge-Ampere operator
bounded plurisubharmonic functions (see [1]).
Recently, to extend the domain of definition of
this operator for plurisubharmonic functions
which are not neccessary to be locally bounded,
in [6], [7] Cegrell introduced and investigated
the classes & (Q), F,(Q),E,(Q), F(Q),E(Q)
on which the complex Monge-Ampeére operator
is well defined. He has developed pluripotential
theory on these classes. To extend the class
of plurisubharmonic functions and to study
a class of the complex differential operators
than the
operator, in [2] and [10], the authors introduced
and studied the

complex Hessian operator. They also were

more  general Monge-Ampere

m-subharmonic functions

interested in the complex Hessian equations
in 1" and on compact Kahler manifolds.
Continuing to study the complex Hessian
operator for m-subharmonic functions which
may be not locally bounded, in recent preprint,
Lu Hoang Chinh introduced the Cegrell classes
ENQ),F,(Q) and &, (Q) associated to
m-subharmonic functions (for details, see [9])
and has proved the complex Hessian operator is

well defined on these classes.

On the other hand, convex, subharmonic
and plurisubharmonic functions are all convex

cones in some larger linear space. Given any
such cone, K say, we can investigate the space
of differences from this cone 0K . Such studies
are often motivated by algebraic completion of
the cone, and differences of convex functions
were considered by F. Riesz in as early as 1911.
The O - convex functions, or d.c. functions as
they sometimes are denoted, were studied by
Kiselman [13], and Cegrell [5], and have been
given attention in many areas ranging from
nonsmooth optimization to super-reflexive
Banach spaces [3]. The 6 -subharmonic where
first given a systematic treatise in [14]. The class
O -plurisubharmonic functions were studied
by Cegrell [4], and Kiselman [13], where the
topology was defined by neighbourhood basis
of the form (UﬂPSH)—(UﬁPSH), U a

neighbourhood of the origin L, .

In [16], the authors gave a subset of
m-subharmonic functions, the subclasses
8E°(Q) and 8(SH, N L*)(Q) of —SH, (Q).
In this paper we will give and study a subset of
delta m-subharmonic functions, 5.7-; " (Q)

For convenience we will denote the
class of negative m-subharmonic functions on a
domain Q by SH, (Q), and as in [9] we will
denote the class of bounded m-subharmonic
functions with boundary value zero and finite
total m-Hessian mass by &, (Q).

For the notation of the so called energy class
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F (Q) on a hyperconvex domain Q we refer
to the paper [9]. As for now we remind the
reader that the generalized complex m-Hessian
operator is well defined in 7, (Q) and functions
from F, (Q) has finite total m-Hessian mass.

The paper is organized as follows. Beside
the introduction the paper has two sections. In
Section 2 we recall the definitions and results
concerning to m-subharmonic functions which
were introduced and investigated intensively in
recent years by many authors, see [15],... We
also recall the Cegrell classes of m-subharmonic
functions F () and &£ (€) introduced and
studied in [9] and the class F"(Q2) introduced
and studied in [12]. Final, in Section 3 we
construct a locally convex topology on the
vector space 5F ", p > 0.

2. Preliminairies
2.1. m-Hessians

Let QQ be a hyperconvex domain in[]". For
a twice continuously differentiable real function
ueC*(Q), the secondorder differential at a
fixed point z, € Q

. i
dd‘u = E;M_iﬂ,zdzj AdzZ,
J>
is a Hermitian quadratic form. After

an appropriate unitary transformation of

coordinates, it reduces to the diagonal form
dd“u = é[k,dz, NZ 4+ hdz, AdE ],

where A, (u),...,A () are the eigenvalues
of the Hermitian matrix (uj,];), which are real,
ie. AMu) =, (u),...,A, (u)) el " Itis easy to

see that

(ddu)" AB"™" =ml(n-m)'H (u)B",Vi1<m<n

H,(u)=

>y,
1< <), <n

where
is the Hessian of order m of the vector
AMu) =, (u),...,A, (u))ell”.  Thus, the
operator (dd ‘u)" AB"",V1<m<n, for twice
continuously differentiable functions is related
to the Hessian of the vector A =(A,,...,A,).

2.2. m-subharmonic functions

We
functions introduced and investigated in [2]

recall the class of m-subharmonic

recently. Forl <m < n, we define

fm ={nel MAB T >0,....m" AP 20},

where [J denotes the space of (1,1)

(L)
-forms with constant coefficients.

Definition 2.1. Let # be a subharmonic
function on an open subsetQQ —[]”. Then u is
said to be a m-subharmonic function on Q if
for every mn,,...,m,,, in I' the inequality

ddunn, n...amn, AR 20,

holds in the sense of currents.

By SH, (Q) (resp.SH,(€2)) we denote
the cone of m-subharmonic functions (resp.
negative  m-subharmonic  functions) on
Q). Before formulating basic properties of

m-subharmonic, we recall the following (see
[2]).

For A=(A,,...,A,)el”
define

and 1<m<n

S,(M) =

Z 7”11 "'7‘1,,,'

1<ji<-<j,,<n
Set
L ={S 20}N{S, >0} N---N{S, >0}.

By 'H we denote the vector space of complex
hermitian nxn matrices over [1. For 4e H
let A(4)=(A,,...,A,)ell” be the eigenvalues
of A. Set

S, (A) =S, (M(A)).

As in [11] we define

Fn={deH:MA)eT, }={8 >0} {S, >0}.
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Example 2.2, Let
u(z),25,23,2,) = 5||Zl||2 Jr9||zz||2 [z ”2 _”24”2'
It follows from (01), we see that u € SH, (0 *).
However, u is not a plurisubharmonic function
in % because the restriction of u on the line
(0,0,z;,,0)0(0,0,0,z,) is not subharmonic.

Now as in [9] and [10], we define the

complex Hessian operator of locally bounded
m-subharmonic functions as follows.

Definition 2.3. Assume that
Up,...,u, € SH ()N L, (Q). Then the
complex Hessian operator H, (u,...,u,) is
defined inductively by

ddcup Aenddu AR :ddc(updd”up_1 Aenddu ABTT.

From the definition of m-subharmonic
functions and using arguments as in the proof of
Theorem 2.1 in [1] we note that H,, (u,,...,u,)
is a closed positive current of bidegree
(n—m+ p,n—m+ p) and this operator in
continuous under decreasing sequences of
locally bounded m-subharmonic functions.
Hence, for p=m, dd‘u n---~ndd‘u, A"
is a nonnegative Borel measure. In particular,
u=u=--=u, eSH, (Q)NL, (Q)
the Borel measure

H,, (u) = (ddu)" AB"™,

when

is well defined and is called the complex

Hessian of u.

2.3. The £.(Q) and F,(Q) classes

Next, we recall the classes &.(Q) and
F (€) introduced and investigated in [9]. First
we give the following.

Let Q2 beabounded domainin [1". € issaid
to be m-hyperconvex if there exists a continuous
m-subharmonic function u:Q —[]~ such
that Q ={u<c}€Q for every c¢<0. As
above, every plurisubharmonic function
is m-subharmonic with m>1 then every
hyperconvex domain in [1 " is m-hyperconvex.

Let Q1" be a m-hyperconvex domain. Set

€, =ENQ) = {u e SH,(Q)N L (Q): lim u(z) =0, j H, (1)<},

F=F Q) ={ueSH,(Q):3 £ 5u,0 u, sup[H,(u)<oof,
J o

£, =€,(Q)={ueSH,(Q):Vz, €Q,3 aneighborhood ®> z,, and &’ Su;[l u on o,

and

where H, (u)=(ddu)" Ap"™" denotes the
Hessian measure of ueSH, (QQ)NL"(Q).
From  Theorem 3.14 in [9]
that if wuef (Q),

it follows
the complex Hessian

suijm(uj)<oo},
I

H, (u)=(ddu)" AB"™" is well defined and is
a Radon measure on €. On the other hand, by
Remark 3.6 in [9] we may give the following
description of the class £ (Q):

£, =6 ={ueSH, (Q):V U€Q,3 veF,(Q), v=u on U}.

3. The topology and m-Hessian on 6&; class

3.1. Weighted energy classes of SH  functions

The classes of SH  functions were introduced
and investigated by Hung in [12]
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]—"Z’” :{goe SH (©):3 &' > @, U ¢,SQPI;((¢j)Hm¢j)” < +oo}.
Jjz Q

When we take y(z)=(-t)",tel ", p>0, we have the following class of m-subhamornic

functions

}"p’”:{(peSHm(Q):EI & 29,0

Now, by the definition of this class, we have
the following result.

Theorem 3.1. Forall p >0, then class F')
has the following properties:

i) F7, isaconvex cone set, i.e.if ¢, y € F)

and a,b>0 then ap+by € F';
i) .7:';
ie. if

satisfies the max property,
peF and y € SH,(Q) then

co,sugf( ) H,(9,)" <+00}
]>
max(p,y) € F.

Proof. i) First, we prove that if u € 7 (€2)
then au € (). Indeed, let {u;} < EN(Q),
u; 1 u on Q with

sup j ()" (dd“u,)" A """ <o,

It is clear that {au,} E(Q), au;ll au
on Q. Moreover, since

supI(—auj)p(ddcauj)m AT =a"? supj(—uj)p(ddcuj)m AP <0
J Q J Q

Hence au e F7(€). By the above proof,
we can assume that o +y =1.

Let {uj},{vj}cé'ng(Q), u; [l u on L,

sup j (—u,)" (dd“u,)" A ™" <o
I a

and

sup [ (=v,)" (dd“v,)" A " <o
v, u on Q, ’a

By Lemma 2 in [12], we have

su_pJ-(—auj —yv)P(dd (au; +yv,)" A"
o)

<m! [sup j (=u,)" (dd‘u;)" A B"" +sup j (—v,)"(ddv,)" A ﬁ"-mj <o
o) JQ

It is clear that F7 satisfies the condition ii). Now we shall introduce the space 67" and

Hence, the desired conclusion follows. give some necessary elements that will be used
3.2. The SE!' class to construct the topology on this space. We set

={uel (Q): Jv,we Flu=v—w}.

loc

SF) = F -,

By Theorem 3.1, the class F" is a convex

is a vector space.

e,)=[ (~w)"H, ().

cone and so O F"
L For each k €l] we set

For u e .7-;'" we set
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U, ={u :v—w:v,weFmp,ep(v)<%,ep(w)<%}.

In the next section, we are going to study
some properties of the family of subsets
U,,k €lJ. Then we will construct the topology
on the vector space 0F" from that family.

Now we equip once topology for the space
OF,).
space OF," is a locally convex topological

Infact, we will prove that the vector

space, and moreover is Frechet space. First, we
need some lemmas.

Lemma 3.2. The set U . 1s abalanced subset
in the vector space 5.7-;’" ,ie. VueU,, wehave
aueU,,V|al<l.

Proof. Given v .7-;"’ and 0 <a <1. We have

e,(av)= IQ (—av)’H, (av)=a" IQ (—av)"H,(v)
< jQ (- H,(v)=e¢,(v).

From this we infer that U, is a balanced set.

Lemma3.3. Theset U, isanabsorbingsubset
in the vector space 67" ,i.e. Vu € 0.F,", 3¢ >0
such that au e U,V |a|<e.

J‘{(/K_t}Hm (p)<t"cap({p<—t}),Vpe&

Proof. First, given ve 7" and a>1 from
the result above we have

e,(av) = _[Q (—av)’H, (av)=a" IQ (—v)'H, (v)
<ce,(v)-

From this result we imply that U, is a
absorbing set.

Theorem 3.4. In the class ]—"p’" , we have the

following estimates:
) If g, € F" then

e,(p+y) <2 [e, () +e,(w)].
ii) If @,y € F" are such that ¢ >y then
Proof. By the definition of the class JF”

it is enough to prove the proposition when
.y &y

1) First, as in the proof of Proposition 3.4 in
[8], we have

M

t"cap({p < =21}) < LW} H (p),Vt>1,Ypek" 2)

We have

e,(@)=[ o) H,(9)=] -p(0y"[ _ H,(pu.

We set ¢,(¢) = J‘Q H, (p). By the Lemma 2.5 in
1

[8], we have
1 1

e (@+y)" <e) ()" +e,(w)".

We set

&,(p) = "—p(-=0)""t"cap(ip <~t})dt.

Applying the formula (1) we infer

ep (w) S ép (¢)5 v¢ € g(;n ‘
Applying the formula (2), we have

(€)

&, ()< [ —p-0""2"[ _, H, (o

o

{o

=27 "op(0" [ H (o)
2

_ Am+p-1 +w_ o1
=2 [ Topey | H (g
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So we imply _ e [ ~
8, () <2 [ Top(=0" [ H, (p)t

<2%,,(p) "
=2"[ (-20)"H,,(9)
<2"¢| (-p)"H,(p)
=2"ce, ().

Therefore we have

e,(p)<2"ce,(9). 4)

For every a €[0,1] we have

&,((1-a)p+ay) = [ " =p(-=1)"'t"cap({(1-a)p-+ ay < ~})dr
<[, 0 eap(ip <~y Oy <~t)di
<[ " =p(=)""t"[eap(ip < ~t}) + cap({y <—t})]dt
=2,(p)+E,().

The following inequalities are straightforward
1

e (@ +v) < (e)(@)" +e,(w)")"
< 2" (e, (@) +e,(W)),

o @20 s%[eo(goneo(w)].

Using the results above we obtain the following estimations

+ " +
e, (p+y) zep(Z-%)SZ ce, =)

<27ee,(P7F

<2"c|é,(p)+¢,(y) ]
<2"c[2"ce,(p)+2"ce, ()]
=2"ce, () +e,(w)]

So 1) was proved.
forevery U, (k 21) we can find ¢, for example,
ii) It is a consequence of (3) and (4). we can choose ¢ = k([22"¢*]+1 such that the

Final, we shall prove 6F" is alocally  convex hull of the set U , is contained in U,.

topol .
convex lopology space On other hand, combined with Lemma 3.2

Theorem 3.5. The vector space 8F," is a  and Lemma 3.3, that the family A of convex
locally convex topology. hull of sets U, ,k >1 is a family of absorbing,

Proof. It follows from the Theorem 3.4 that  balanced, convex sets in the vector space
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OF,". So there is a locally convex topology on
this space such that the family A becomes a
neighbourhood basis of origin.
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MQT SO TINH CHAT TOPO CUA LOP 57

Poan Thi Chuyén
Truong Pai hoc Tay Bdc

Tém tit: Trong bai bdo nay, ching t6i sé dwa ra va nghién ciru mét 16p con ciia I6p delta
m-diéu hoa du:éi, OF) (Q),p > 0. Sau do ch@g t0i sé trang bi mot topo cho khong gian nay va
chitng minh rang khong gian vector 5]-;"1 la 161 dia phwong, hon nita né con la mot khong gian
Frechet.

Tir khéa: Ham S -da diéu hoa duwdi, ham m-diéu hoa dwdi, todn tir m-Hessian, todn tir Monge-
Ampére, ham trong, khéng gian vector tépé 16i dia phirong.
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