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1. INTRODUCTION 
In 1985, Caffarelli, Nirenberg and Spruck 

[10] proposed a model that made it possible to 
study the common properties of potential and 
pluripotential theories, as well as the 
transition between them. The core focuses on 
the this framework is what is known today as 
the class of m-subharmonic functions, which 
are extensions of the class of 
plurisubharmonic functions and encompasses 
the subharmonic and plurisubharmonic ones 
naturally. Recently, many authors have 
studied the class of m-subharmonic functions 
(see  [9], [5], [12], [14]).  

 In order to study the complex m-Hessian 
operator for m-subharmonic functions which 
were not locally bounded on m-hyperconvex 
domain, Chinh introduced the Cegrell classes 
(in [5]); moreover, he proved that the 
complex m-Hessian operator  was well-
defined in these classes.  

In the class of plurisubharmonic 

functions, the weighted energy class ( ) E  

that was a generalization of the class ( )p E

has been introduced and studied by 
Benelkourchi, Guedj and Zeriahi in [2]  and 
[8]. In the class of m-subharmonic functions, 

we has introduced the class , ( )m  F  with 

finite weighted complex m-Hessian [6]. 
In this paper, we shall construct a new 

class of weighted energy functions in the class 
of m-subharmonic functions and study some 
analysis properties of this class. Specifically, 
the paper is organized as follows. The paper 
has three sections. In Section 2, we give some 
definitions and necessary results in order to 
prove our main results. Our main results are 
stated and proved in Section 3. We shall 
prove a characterization in finite weighted 

energy in term of mC  capacity for the class
0 ( )m E .  

 2. Preliminaries 
In this section, we review some of 

definitions and results concerning to m-
subharmonic functions which have been 
introduced and investigated intensively in 
recent years by many authors (see [9], [12], 
[14]). We also recall the Cegrell classes of m-

subharmonic functions ( )m F and ( )m E
introduced and studied in [5]. Next, we recall 

the class  , ( )m  F  with finite weighted 

complex m-Hessian was introduced in [6]. 
2.1 The class of m-subharmonic 

functions  

First, we will denote by 
(1,1)

the space of 

(1,1)-forms with constant coefficients. 

For1 m n  , we define 
1

(1,1)
ˆ { : 0, , 0}.n m n m

m               

Definition 2.1. Let u be a subharmonic 

function on an open subset n . Then u is 
said to be a m-subharmonic function on   iff  

for every 1 1, , m   in ˆ
m the inequality 

1 1 0,c n m
mdd u    
      

holds in the sense of currents. We also denote 

( )m SH the set of m-subharmonic functions 

on   while ( )m
 SH denotes the set of 

negative m-subharmonic functions on  . 
 Due to Proposition 3.1 in [9] (also 

see the Definition 1.2 in [14]), a subharmonic 
function u is m-subharmonic on   iff 

( ) 0,c k n kdd u     for 1, ,k m  . More 

generally, if 
2

1, , ( ),ku u  C  then for all 

1
ˆ, , mm k    , we have 
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1 1 0c c n m
k m kdd u dd u    

      

                (1) 
holds in the sense of currents.  

It follows on [9] and [12] the m-Hessian 
operator for locally bounded m-subharmonic 
functions is defined as follows. 

Definition 2.2. Assume that 

c1 lo, , ( ) ( )p mu u L    SH  with p m . 

Then the complex Hessian operator 

1( , , )m pH u u is defined inductively by 

1 1 1 }.( )c c n m c c c n m
p p pdd u dd u dd u dd u dd u  

        

In [9] and [12], the authors proved that 

1( , , )m pH u u  is a closed positive current of 

bidegree ( , )n m p n m p    and this 
operator is continuous under decreasing 
sequences of locally bounded m-subharmonic 
functions. In particular, when 

loc1 ( ) ( )m mu u u L      SH  the 

Borel measure ( ) ( )c m n m

mH u dd u     is 

well defined and is called the complex m-
Hessian of u.  

 2.2 Some weighted energy classes of 
m-subharmonic  

Now, we recall the following weighted 
energy classes of m-subharmonic functions 
which were introduced and investigated in 
[5]. From now on, we make the assumption 
that   is a bounded m-hyperconvex domain 

in n , there exists a continuous m-

subharmonic function :u  such that 

{ } , 0c u c c     Ð . It has already been 

shown that, every plurisubharmonic function 
is m-subharmonic with 1,m  so every m-

hyperconvex domain in n  is hyperconvex. 
We put 

0 ( ) { ( ) ( ) : lim ( ) 0, ( ) },m m m
z

u SH L u z H u 




        E  

0( ) { ( ) : , ,sup ( ) }m m j m j m ju SH u u u H u



       F  

and 

0( ) ( ) : ,{m mu SH z     E and   a neighborhood  0,z å   and 

0  on ,sup ( ) .}m j m j
j

u u H u


 åE  

From Theorem 3.14 in [5] it follows that 

if ( ),mu E the complex m-Hessian 

( ) ( )c m n m
mH u dd u     is well defined 

and it is a Radon measure on  . On the other 
hand, by Remark 3.6 in [5] the following 

description of  ( )m E  may be given                  

( ) ( ) : , ( ),  on .{ }m m m mu SH U v v u U          ÐE E F

        (2) 
Now we recall the two weighted 

pluricomplex energy classes of 
plurisubharmonic functions defined in [6].  

Definition 2.3. Let :   be an 

decreasing function and 1 m n   and   is 
a bounded m-hyperconvex domain in .n We 
define  

0

, ( ) { ( ) : { } ,m m j m ju SH u u u
     F E

on                                          

sup ( ) sup ( )( ) },m c m n m

j j j
j j

e u u dd u   



   
and 

, ,( ) { ( ) : , ,m m mu SH K v v u 

        ÐE F

 on K}. 

In the case ( ) 1t  for all t < 0, we get 

, ,( )( . ( ))m mresp  F E  coincide with the class 

( )( . ( ))resp F E  in [4]. Moreover, by 

Proposition 4 in [6], , ( ) ( )m m   E E  

provided that (2 ) ( )t a t   for all t < 0 with 
some a > 1. We will prove the this assertion 
in another way as follows. 

Proposition 2.4. If (2 ) ( )t a t  for all t 
< 0 with some a > 1 then  

, ,( ) ( ) ( . ( ) ( )).m m m mresp      F F E E

 
Proof.  We prove in the second case, that 

, ( )m  E  then   in ( ).m E  Indeed, we 

can assume without loss of generality that 

(0) 0   and ( ) 0t   for every t < 0. Let 

0z   and take a neighbourhood K Ð  of 

0z and a sequence 0{ } ( )m
j  E  such that 

j   on K and 
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sup ( ) ( ) .j m j
j

H  


   

Choose a convex decreasing function 

such that  .  Then 

                          

( ) ( ) ( ) 0,c c cdd d d T dd T              

                    (3) 
where T is closed positive current of bidegree 

(n -1, n -1), hence ( ) ( )mSH    . Then 

sup ( ) ( ) sup ( ) ( ) sup ( ) ( )m j j m j j m j
j j j

H H H        
    

     
Now, as in Lemma 5.5 in [13], we have 

0sup{ ( ) : ( ) } ( ).K

j m K j mu SH u II      E

and
G
j   on K. Let 0

0 ( )mh  E  with 

0 0h  such that
0 ) (h    . Then  by 

Lemma 2.6 in [13], we have 

0 0( ) ( ).K

m j m jh H h H 
 
     

It follows from (3), ( ) ( )mSH    , we 

have 

0 ( ) sup ( ) ( )m j m j
j

h H H   
 

      

Now 

0 0 0inf ( )sup ( ) sup ( ) sup ( )K K K
m j m j m j

K K Kj j j

h H h H h H  
  

        

Hence 

0

0

1
sup ( ) sup ( ) ,

sup
K K

m j m j
j j

K

H h H
h

 
  

   
   

Thus lim ( ).K
j m

j
  F  By (2), we have 

that ( )m E . 

2.3. The m-capacity 
We recall the notion of m-capacity as in 

[5]. As well as Cn  capacity in the sense of 

Bedford and Taylor on , the Cm -capacity is 
the set function which is given  as follows. 

Definition 2.5. The m-capacity of a Borel 
set E   with respect to ,  is defined by 

( ) ( , ) sup ( ) : ( ), 1 0 .{ }m m m m

E

C E C E H u u u        SH

The outer m-capacity of a Borel set  E   
is defined by 

* ( , ) : inf ( , ) : ,{m mC E G C G E G G    

is an open subset of  }. 
We refer to [6] for more details about 

elementary properties of the m-capacity, 
which is similar to the capacity was presented 
in [1] (see also [3]). 

On other hand, let *
,Eh   denotes the 

smallest upper semicontinuous majorant of 

, .Eh   It follows on Theorem 2.20 in [11], we 

get 
* *

,( ) ( )m m EC E H h 



   

and 

, ( ) sup{ ( ) : ( ), 1on }.E mh z z E  

     SH

 
Now we combine with Proposition 2.10 

in [5], we gives some well-known and 
elementary properties of the m-capacity 
similar to the capacity presented in [1] (see 
also [3]). Namely, we have the following 
resutl, which is a generalization of the ones in 
[13]. 

Lemma 2.6.  

a) If 1 2 1 2E E    then 1 2 2 1( , ) ( , );m mC E C E „  

b) 
11

( ) ( );m j m j

jj

C E C E
 



  

c) If 1 2
nE D  Ð Ð  then 

1 2, ,1 2( , ) ( , );m mDC E C C E  „  

d) If jE E then ( ) ( ).m j mC E C E  

Proof. The assertion a), b) and d) are 
follows from the definition of the m-capacity. 
Now, we prove c). Indeed, since we can cover 

D by finite number of balls contained in 1

then by a) and b) we can assume that 

0( , )D z rB and 1 0( , ),z R B  where 

( , )z rB is the ball with center at z and radius 
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r. Now, let 1( )mu SH   be such that 

1 0u „ „ . We set  
2 2 1 2 2

0( ) ( ) (| | ).z R r z z R      

Then ( ), 0n
mSH    on 

1, 1 „  on  D. Set 

1

2 1

max{ , }  on ,

 on \

u
u






 

 
 

and
2

1

( )
(1 ) ( ),

L
v c u c c  




   ‖ ‖ . Then we 

have  

2( ), 1 0mv SH v   „ „  and ( ) (1 ) ( ) on .m
m mH v c H u D   

Hence 1 2 2( , ) (1 ) ( , ).m
m mC E c C E  „  

From Theorem 3.6 in [13], we have we give the following. 

Proposition 2.7. If 0, ( )mu v E  then  

{ } { }

( ) ( max( , )) .c m n m c m n m

u v u v

dd u dd u v  

 

     

Proof. First we prove the following result 

                     ( max( , )) ( )c m n m c m n mdd u v dd u  

 

                    (4) 

Indeed, for all ( ),oh C  put max{ , } ( )mu v   F , then by Stokes formula we have 

1

1

1

1

( ) ( )

( )

( )

( ) .

c m n m c c m n m

c c m n m

c c m n m

c m n m

h dd dd h dd

udd h dd

hdd u dd

h dd u

    

 

 



  

 

 



 



 



     

   

   

   

 







 

Then let 1h  we have the desired. 
 Now, applying Theorem 3.6 in [13], we have  

( ) ( max( , ))c m n m c m n mdd u dd u v      
on {u>v}, we imply that

{ } { }

{ } { }

( max( , )) ( max( , )) ( max( , ))

( ) ( max( , ))

c m n m c m n m c m n m

u v u v

c m n m c m n m

u v u v

dd u v dd u v dd u v

dd u dd u v

  

 

  

  

 

 

    

   

  

 
 

Then, from (4), we have 

                             
{ } { }

( ) ( )c m n m c m n m

u v u v

dd v dd u  

 

                            (5) 

Then, replace v by v  in (5) we obtain the following

{ } { } { }

( ) ( ) ( )c m n m c m n m c m n m

u v u v u v

dd v dd u dd u
 

    

    

      
 

Therefore, let 0,  we have the following 

{ } { }

( ) ( ) .c m n m c m n m

u v u v

dd v dd u  

 

     

and the desired conclusion follows. The proof of the theorem is complete. 
 
3. Results 
In this section, we give the following properties for the weighted m-capacity of the functions in 

0 ( ).m E  
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Proposition 2.8. Forall 0( )mu E and 0s  we have

{ }

( 2 ) ( ) ( ).m c m n m m
m m

s

s C s dd s C s


   



        

Proof. Next, by Lemma 2.6 and then applying Theorem 3.6 in [13], we have 

{ } { }1 ( ) 1 ( max( , )) .c m n m c m n m
u v u vdd u dd u t  
                                                             

Then 

{ } { }

{ }

( ) ( max( , ))

( max( , 1))

( )

c m n m c m n m

u s u s

m c m n m

u s

m
m

dd u dd u s

u
s dd

s

s C u s

 



 

 





   

  

  

 

  

this proof the first inequality. 
To complete the proof it remains to show the second inequality. We have  

{ 2 }

{ 2}

{ 1}

( 2 ) sup{ ( ) : ( ), 1 0}

sup{ ( ) : ( ), 1 0}

sup{ ( ) : ( ), 1 0}

c m n m
m m

u t

c m n m
m

u

t

c m n m
m

u

t

C u t dd SH

dd SH

dd SH



   

   

   











 

        

      

      







 

Then, apply Proposition 2.7  we have   

{ 1} { 1}

( ) ( ) .c m n m c m n m

u u

t t

u
dd dd

t
 

   

   

     

Then 

{ 1}

{ 1}

{ }{ 1}

( 2 ) sup{ ( ) : ( ), 1 0}

sup{ ( ) : ( ), 1 0}

1 1
( ) ( )

c m n m
m m

u

t

c m n m
m

u

t

c m n m c m n m

m m
u u t
t

C u t dd SH

u
dd SH

t

u
dd dd u

t t t





   

  

 



 



 

 



        

      

   





 

 

Thus 

{ }

( 2 ) ( )m c m n m
m

u t

t C u t dd u  



     

the desired conclusion follows. The proof of the theorem is complete. 

The 0

mE  and  were defined by m-Hessian measure. By using Proposition 2.8 about the upper 

bound as m-capacity in the class 0 ,mE  we gave a characterization for this class in th following 

Theorem, which is the main result of this paper.  

Theorem 2.9. Asusume that :    is a function satissfiles the condition 

(2 ) ( ), 0t a t a    and ( ) 0, 0.t t     Then 
0

m E  we have  

0

( ) ~ ( ) ( ) .m m

me s s C s ds   


     

Proof.  Indeed, applying Lema 1 in [6], we have 
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{ }

( 2 ) ( ) ( ).m c m n m m

m m

s

s C s dd s C s


   



        

Note that, by replacing min( ( ); )t jt   and approximately if necessary for ( ),t  we can assume 

that (0) 0  . Then  

0 { }

( ) ( )( ) ( ) ( ) .m c m n m c m n m

s

e dd s dd ds



       


 

 

         

Then 

0 0

( ) ( 2 ) ( ) ( ) ( ).m m m

m ms s C s e s s C s    
 

             

On other hand 
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However, we have 
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Hence, applying the condition (2 ) ( ), 0t a t a   , we have
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From which we infer that 

0 0

1
( ) ( 2 ) ( ) ( ).
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a
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

     

The proof of the theorem is complete. 
Corollary 2.10. Assume that   satisfies the condition of Theorem 2.9 and 

,( ), ( ),m mv SH u u v    F  then , ( ).mv  F  

Proof. Since ,mu F , then from Definition 2.3 that  
0 , ,sup ( ) .m

j m j
j

u e     E  

Put max( , ),j jv v  then ( )j mv SH  . We prove that 0

j mv E . Indeed, since j u , but  

v u  we infer that jv v  and lim ( ) 0.
z

v z


  Further more, by Theorem 5.2 in [7] 

( ) ( ) .c m n m c m n m

j jdd v dd   

 

       

To prove the theorem, we only need to prove that 

sup ( )( ) .c m n m

j j
j

v dd v  



    
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Indeed, we have from Theorem 2.9 

0 0

( )( ) ( ) ( ) ( ) ( ) ~ ( )c m n m m m m

j j m j m j jv dd v s s C v s ds s s C s ds e     
 





               

Then 

sup ( ) sup ( ) .m m

j
j j

e v e      

Thus 
,mv F . 
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ĐẶC TRƢNG CHO MỘT LỚP HÀM m-ĐIỀU HÕA DƢỚI 
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Tóm tắt:  Chúng tôi đưa ra một số đánh giá đối với m-dung tích, từ đó đưa ra một đặc trưng 

của lớp 0

mE  thông qua m-dung tích.  

Từ khóa: Hàm đa điều hòa dưới, hàm m-điều hòa dưới, miền siêu lồi, toán tử m-Hessian, toán 
tử Monge-Ampere, hàm trọng, m-dung tích. 

Ngày nhận bài: 09/07/2021. Ngày nhận đăng: 01/09/2021.  
Liên lạc: Vũ Văn Nam, e - mail: vunamtoanchuyensl@gmail.com 

  

mailto:vunamtoanchuyensl@gmail.com

