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Abstract. In this paper we give the properties for m-capacity which is a generalization of the ones
in [13]. Then as an application, we introduce a characterization of E° class in terms of m-

capacity.
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1. INTRODUCTION

In 1985, Caffarelli, Nirenberg and Spruck
[10] proposed a model that made it possible to
study the common properties of potential and
pluripotential theories, as well as the
transition between them. The core focuses on
the this framework is what is known today as
the class of m-subharmonic functions, which
are  extensions of the class of
plurisubharmonic functions and encompasses
the subharmonic and plurisubharmonic ones
naturally. Recently, many authors have
studied the class of m-subharmonic functions
(see [9], [5], [12], [14]).

In order to study the complex m-Hessian
operator for m-subharmonic functions which
were not locally bounded on m-hyperconvex
domain, Chinh introduced the Cegrell classes
(in [5]); moreover, he proved that the
complex m-Hessian operator  was well-
defined in these classes.

In the class of plurisubharmonic

functions, the weighted energy class E, ()

that was a generalization of the class E,(€2)

has been introduced and studied by
Benelkourchi, Guedj and Zeriahi in [2] and
[8]. In the class of m-subharmonic functions,

we has introduced the class F, (€2) with

finite weighted complex m-Hessian [6].

In this paper, we shall construct a new
class of weighted energy functions in the class
of m-subharmonic functions and study some
analysis properties of this class. Specifically,
the paper is organized as follows. The paper
has three sections. In Section 2, we give some
definitions and necessary results in order to
prove our main results. Our main results are
stated and proved in Section 3. We shall
prove a characterization in finite weighted
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energy in term of C, —capacity for the class
En (Q).

2. Preliminaries

In this section, we review some of
definitions and results concerning to m-
subharmonic functions which have been
introduced and investigated intensively in
recent years by many authors (see [9], [12],
[14]). We also recall the Cegrell classes of m-
subharmonic functions F_ () and E,(Q)
introduced and studied in [5]. Next, we recall
the class F, () with finite weighted
complex m-Hessian was introduced in [6].

21 The class of m-subharmonic
functions

First, we will denote by [, the space of

(1,1)-forms with constant coefficients.
Forl<m<n, we define

fm ={n el L) :77/\ﬂn_l >0,...,0" A" 20}
Definition 2.1. Let u be a subharmonic

function onan open subset Q= ". Thenu is
said to be a m-subharmonic functionon Q iff

A

for every 7;,...,17,4in ', the inequality
dduamp An---An, AL 20,

holds in the sense of currents. We also denote

SH,, (€2) the set of m-subharmonic functions

on Q while SH_ (€2) denotes the set of

negative m-subharmonic functions on Q.
Due to Proposition 3.1 in [9] (also

see the Definition 1.2 in [14]), a subharmonic

function u is m-subharmonic on Q iff

(dd°u)* A "% >0, for k=1,...,m . More
generally, if uy,...,u, € C*(QQ), then for all

e os Mk Efm , we have



ddu A---Addu A A AT AL 20

1)
holds in the sense of currents.
It follows on [9] and [12] the m-Hessian
operator for locally bounded m-subharmonic
functions is defined as follows.

Definition 2.2. Assume that
Uy,...,U, € SH ()M LT () withp<m.
Then the complex Hessian operator
H,(U,,...,u,)is defined inductively by

ddu, A---Addu A "M =dd®(u,ddu, y A---Addup A BT

In [9] and [12], the authors proved that
Hm(ul,...,up) is a closed positive current of

bidegree (N—mM+p,Nn—m+p) and this
operator is continuous under decreasing
sequences of locally bounded m-subharmonic
functions. In particular, when

u=u =---=U, eSH, (Q)NL: () the

loc
Borel measure H,_ (u)=(dd‘u)™ Ap"™" is
well defined and is called the complex m-
Hessian of u.
2.2 Some weighted energy classes of
m-subharmonic

Now, we recall the following weighted
energy classes of m-subharmonic functions
which were introduced and investigated in
[5]. From now on, we make the assumption
that Q3 is a bounded m-hyperconvex domain
in 0" , there exists a continuous m-
subharmonic function u:Q — [~ such that
Q. ={u<c}bQ, Vc<O0. It has already been
shown that, every plurisubharmonic function
is m-subharmonic with m>1, so every m-

hyperconvex domain in [1" is hyperconvex.
We put

En(Q) ={u e SH,(Q) N L"(Q): lim u(2) =0, [ Hy () <o},

Fr(Q) =fu e SH,(Q):3u; €l %,u; 0 u,sup [H, (u;) <-+oc}
Q

and

E,(Q)={ueSH_(Q):Vz, Q,and 3 aneighborhood @4 z,, and
Exédu; 0 uon a),Sl:pJ.Hm(uj)<oo}.
Q

From Theorem 3.14 in [5] it follows that
if ueE,(Q), the complex m-Hessian
H, (u)=ddu)™ Ap"™ is well defined
and it is a Radon measure on . On the other
hand, by Remark 3.6 in [5] the following

description of  E,(QQ) may be given
E, =E,(Q) ={uesH;(Q):vUDQ IveF, (@)v=uonU}.

(2)
Now we recall the two weighted
pluricomplex energy classes of

plurisubharmonic functions defined in [6].
Definition 2.3. Let y:[]~ —[] "be an

decreasing function and 1<m<nand Q is

a bounded m-hyperconvex domain in [1".We
define

Fr (€ ={ueSH (Q):3 {u}=E], u;0 u

on Q

supey (u;) =sup [ z(u;)(ddu))" A 8" <+oc},
J I o

and

B, (@Q)={ueSH_ (Q):V KbQ,3veF ,v=u
on K}.

In the case y(t)=1for all t <0, we get
Fo., (©Q)(resp.E, ,(€2)) coincide with the class
F (Q)(resp.E(Q?)) in [4]. Moreover, by
Proposition 4 in [6], E, ,(©2) cE, ()
provided that »(2t) <ay(t) for all t< 0 with
some a > 1. We will prove the this assertion
in another way as follows.

Proposition 2.4. If y(2t) <ay(t) for all t
< 0 with some a > 1 then

Fin, () cFn(Q) (resp.E, , () < E,(€2)).

Proof. We prove in the second case, that
ek, ,(Q) then ¢ in E;(Q). Indeed, we
can assume without loss of generality that
2(0)=0and x(t) >0 for every t < 0. Let
Z, € Q and take a neighbourhood KD Q of
Zyand a sequence {o;} < E;"(€2) such that

o;ll ¢ onKand



sup [, 2(9) () <o

Choose a convex decreasing function y
such that » < ».Then

dd® (@) = ¥"(p)de A dc(p/\;' + 7' (@)dd°p AT 20,

where T is closed positive current of bidegree
(n-1, n-1), hence y(¢p) € SH,, (). Then

sup [ () Ho(p) <5UP |, 1(0)) () <SUP [ (9 Hi () <400

Now, as in Lemma 5.5 in [13], we have

ok =sup{u e SH; () :u< (I, )p,} e EX(Q).

and (DJG ] @ onK. Let h, € Ex(Q) with

h, #Osuch that—h, < x(¢). Then by
Lemma 2.6 in [13], we have

.[Q—hon((D;() < IQ_hOHm(qu)'
It follows from (3), x(¢) e SH_(Q), we
have

JobHa () <sUp [, Zp)Hn () < o0

Now

inf (-t)sup [, Hin(9]) <up [, ~thHn(p]") <5Up [ HyHo (o)

jell
Hence

Sup [ H(01) <

jell —suph,
K

Thus lime[© e F, (€). By (2), we have
J

thatp € E ().

2.3. The m-capacity

We recall the notion of m-capacity as in
[5]. As well as C, capacity in the sense of
Bedford and Taylor on Q, the Cy, -capacity is

the set function which is given as follows.
Definition 2.5. The m-capacity ofa Borel

set E — Q with respect to QQ, is defined by

Cn(E)=Cy (E, ) =sup{[ H,(u) :u € SH, (), ~1<u<0}.

E
The outer m-capacity of a Borel set Ec—Q
is defined by

C.(E,G)=inf{C (G,Q):EcG,G
IS an open subset of Q }.

We refer to [6] for more details about
elementary properties of the m-capacity,
which is similar to the capacity was presented
in [1] (see also [3]).

sup [ oy (¢]) <o

On other hand, let hZ,, denotes the
smallest upper semicontinuous majorant of
he ,. It follows on Theorem 2.20 in [11], we
get

Cn(E)=[Hu(h: o)

and
he (2) =sup{e(2) : ¢ € SH_ (Q2),p<-10n E}.

Now we combine with Proposition 2.10
in [5], we gives some well-known and
elementary properties of the m-capacity
similar to the capacity presented in [1] (see
also [3]). Namely, we have the following
resutl, which is a generalization of the ones in
[13].

Lemma 2.6.

Q) If EcE,cQ cQ, then C,(E,Q,), C,(E,, ),

o) CulJE) = XCu(E)):

0)If ECDP O, cQ,PI" then C,(E, )., Cp, 0,CnlE );

d)If E;[l Ethen C,(E;)I C,(E).
Proof. The assertion a), b) and d) are

follows from the definition of the m-capacity.
Now, we prove c). Indeed, since we can cover

D by finite number of balls contained in €,

then by a) and b) we can assume that
D=B(z,,r) and € =B(z,,R), where
B(z,r)is the ball with center at z and radius



r. Now, let ueSH_ () be such that {max{u,y/} on Q,,
U=

-1, u,, 0. We sezt - , , 14 on Q,\Q
(//(Z) = (R —-r ) (| Z_ZO | -R ) andv = (1+C)_1(U —C), c =l 74 Il @) Then we
Then w eSH,_, ("), =0 on have

0, v,, —1on D. Set
veSH, (Q,),-1, v,, 0 and H_(v)=@+c)™H,,(u) on D.

Hence C(E,Q),, 1+c)"C,(E,,Q,).
From Theorem 3.6 in [13], we have we give the following.
Proposition 2.7. If u,veE’(Q) then

j (dd°u)™ A g" " = j (dd® max(u,v))™ A B" ™.

{u>v} {u>v}
Proof. First we prove the following result
j (dd® max,v))™ A "™ < j (ddu)™ A g" " 4)
Q Q

Indeed, for all heC? (), putew =max{u,v}eF (), then by Stokes formula we have
[-h(dd°@)" A B = [-wdd°h A (dd @)™ A g™

Q Q

< [-udd°h A (dd°@)™* A "
Q

= j —hdd®u A (dd°@)™* A B" "
Q

=... :j‘—h(ddcu)”” ABTM

Then let h[J —1we have the desired.
Now, applying Theorem 3.6 in [13], we have

(ddu)™ A 8™ = (dd® max(u,v))" A "
on {u>v}, we imply that
[ (dd® max(uv)" A" = [ (dd® max@,v))" A A"+ [ (dd® max(@,v)" A A"
Q {u>v} {usv}
< j (ddu)™ A 8" + j (dd® max(u,v))" A 8"

{u>v} {usv}
Then, from (4), we have

[ @y ap™< [ (ddu)"ApmT (5)
{u<v} {usv}
Then, replace v by v—gin (5) we obtain the following

[ v Ap < [ (ddu)"Ap < [ (ddu)"Ap"
{u<v—¢&} {usv—¢} {u<v}

Therefore, let &£ — 0, we have the following

j (dd°v)" A B" " < j (dd°u)™ A g™
{u<v {u<v}

}
and the desired conclusion follows. The proof of the theorem is complete.

3. Results
In this section, we give the following properties for the weighted m-capacity of the functions in

En ().
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Proposition 2.8. Forall ucE?(Q2)and s>0we have
S"Cr(p<-25)< [ (dd°p)" A B"" <S"C,y(p<—5).

{p<-s}
Proof. Next, by Lemma 2.6 and then applying Theorem 3.6 in [13], we have
Ly (ddu)™ A g7 =1 5 (dd® max(u,—t))" A B
Then

(dd°u)™ A g™ = j (dd® max(u,—s))™ A 8"
{u<-s} {u<-s}
u _
=s" j (dd® max(=,-1)™ A g™
{u<-s} S

<s"C,,(u<-s)
this proof the first inequality.

To complete the proof it remains to show the second inequality. We have
C,, (u<—-2t)=sup{ j (dd°p)™ A 8" ™ :p e SH, (Q),~1< <0}
{u<-2t}
=sup{ j (ddp)" A "™ :peSH._(Q),-1< <0}

(<2}

<sup{ j (dd°p)™ A B" ™ :p e SH, (Q),-1< ¢ <0}

U -1}
Then, apply Proposition 2.7 we ve

I (ddCQ))m /\ﬂn—m < J’ (ddc%)m /\IBn—m.

{%w—l} {%<(p—1}
Then

Co(u<=2)<sup{ [ (dd°p)"AB"™:peSH,(Q),-1<p<0}

(<o

<sup{ | (ddC%)m A peSH (Q),-1< <0}

(i<
< 1 ddcu m n-m __ 1 ddc m n-m
<& [ @EDTALT =5 [ ddunAp
Thus G e

t"C_(u<-2t)< j (ddu)™ A g

{u<-t}
the desired conclusion follows. The proof of the theorem is complete.

The EX and were defined by m-Hessian measure. By using Proposition 2.8 about the upper

bound as m-capacity in the class E°, we gave a characterization for this class in th following
Theorem, which is the main result of this paper.

Theorem 2.9. Asusume that y:0 —0" is a function satissfiles the condition
y(2t) <ay(t),a>0and »'(t)<0,vt<O0. Then Vo eE’ we have

&7 (¢) ~ [~2'(=5)s"C,,(p < -s)ds.
0
Proof. Indeed, applying Lema 1 in [6], we have
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s"C_(p<—2s) < j (dd°p)™ A "™ < S™C_ (¢ < —S).
{p<-s}
Note that, by replacing min(y(t);— jt) {pand approximately if necessary for y(t), we can assume
that »(0)=0. Then

HOE jz(co)(dd o) Aﬁ“m—j ~'(-s) [ (ddp)" " "ds.

{p<-s}

Then

[~7(=8)s"C,(p < ~25) <€} (p) < [ 1/ (=5)s"C,, (¢ < —3).
On other hand ’ ’

o0

[-7s) | (ddp)"Apmds= j-l( $) [ (ddg)" A p"ds

0 {p<-2s} {(/7< 9

1

—7'(-= dd® "Mds
ZMJ 7 2){st}( o) AP
However, we have

Iz((p)(dd o) nB" mds——j () [ (@) Ap s

{p<-s}
Hence, applying the condition y(2t) < aZ(t),a>0 we have

j—z( 5) | (ddp)"np Mds= s jz((p)(dd )" A B "ds

0 {p<-2s}

> = [ )d o) 2 s

I’]—mdS

From which we infer that

T ! m 1 K ’ m
[—7(=8)s"C, (9 <=25) 2 —— [~x'(~5)s"C,,(p < -5).
0 a2 0

Thus

e} () ~ [ -2/ (-5)s"Cy (p <-s)ds.

The proof of the theorem is complete.
Corollary 2.10. Assume that , satisfies the condition of Theorem 2.9 and

veSH (QueF, (Q),u<vthen veF  (Q).
Proof. Since ueF then from Definition 2.3 that

m,y?
Jp, €Ey, ;1) u,supe) (@) < +o.
i

Put v; =max(e;,v), then v; € SH,_(Q). We prove that v, eE,. Indeed, since ¢, u, but
v>u we infer that v;J v and ZIir@rgzv(z)=0. Further more, by Theorem 5.2 in [7]

[@dv))" A B < [(ddp)" A BT < o0
To prove the theorem, we gnly need to prove tﬁat
s,u_pJ‘;((vj)(ddcvj)m AL <0
I a
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Indeed, we have from Theorem 2.9

Q
Then

[ 2u)(dd V)" A B = [ 1/ (=5)S"C,,(v; < =5)ds < [—7'(=5)s"C,,(; <—5)dIs ~ €] (¢;)

supey (v;) <supe’ () < +o.
i i

Thus veF .
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PAC TRUNG CHO MQT LOP HAM m-PIEU HOA DUOI

Vii Vian Nam', Hoang Tung LAnm? va Dwong Manh Linh®
Y Truong THPT Chuyén Son La, *Truong Pai hoc Tay Bdc, *Trirong Cao ding Son La

Tom tdt: Chang t6i diea ra mét sé danh gid doi véim-dung tich, tie dé dwa ra mét dac trung

cua lép E théng qua m-dung tich.

Tirkhoa: Ham da diéu hoa dudi, ham m-diéu hoa dudi, mién siéu 16i, todn ti- m-Hessian, toan

ti Monge-Ampere, ham trong, m-dung tich.
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