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Abstracts: We consider the Casimir type effect of an ideal Bose-Einstein condensate (BEC) gas,
which is confined by two parallel plates in the (x,y)plane and separated by distance £ along z-
direction for any boundary conditions (BCs). In which the Casimir type energy is proportional to
2% and the resulting in Casimir-type force decay as €.

Keywords: Bose gas; Casimir force; Finite size effect.

I. INTRODUCTION

Beside studying of the attractive Casimir
force |1,2], researching the repulsive Casimir
force is an interesting subject. They were
considered in many systems, such as
electromagnetic field [3], massless scalar
field [4 — 9] and BEC(s) gas [10 —25]. In
the ideal BEC(s) area, the Casimir-type effect
was investigated in both grand canonical
ensemble (GCE) |10, 13 — 15] and canonical
ensemble (CE) |11,12] . For imperfect
BEC(s), the effect was first mentioned in [16]
for Dirichlet BC , after that the forces
corresponding periodic BC [17, 18], Robin
BC [22], Zaremba BC, and anti periodic BC
[25] have been discovered, respectively.
Although the Casimir-type effect in an ideal
BEC confined between two parallel plates has
been investigated by many authors [10 — 15].
But this paper aims to show a simpler and
more explicit way to find out the Casimir-type
energy as well as Casimir-type force, to our
acknowledgment. Our paper is organized as
follows: In Sec.ll, we introduce the
thermodynamical grand canonical energy of a
weakly interacting Bose gas. The Casimir
effect of a perfect BEC gas is substantiated in
Sec.Ill. Discussions and Conclusions are
given in Sec.lV and Sec.V, respectively, to
close the paper.

II. THE THERMODYNAMICAL
GRAND CANONICAL ENERGY IN 1-
LOOP APPROXIMATION

The Casimir-type effect in BEC arising
from finite-size effect of grand canonical
potential [11]. In this section, the
thermodynamical grand canonical energy of a
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weakly interacting Bose gas will be

established. Let us begin with the Lagrangian

density of a weakly interacting Bose gas [26]
2

L==¢" (< +172)p(F0) +V, (1)

where

V=—ulpG Ol +219GED1Y (2

is density of interacting potential, h and u
being the Planck constant and chemical
potential.  The coupling constant A
characterizes repulsive pair interaction
strength between identical atoms, which is
dependent on the s-wave scattering length a.,
and atomic mass m within formula A=
4mh*a,/m > 0 [28]. The order parameter is
determined by the expectation value of the
field operator ¢(7,t) .

Firstly, —one considers the tree
approximation, in  which the quantum
fluctuation is neglected. Let ¢, be the
expectation value of the field operator,
minimizing the potential density (2) with
respect to the field operator leads to the gap
equation

¢o (—p+ /1¢§) =0 3)

In the broken symmetry phase, above
equation gives

¢ = u/2 (4)

Our system is considered in connection to
a bulk reservoir of condensate, so that the
chemical potential can be read as [27]

w=2p.[1+0(pa?)| (5)
where p. s bulk density of the
condensate. The quantity p.a> is called gas
parameter that satisfies the diluteness
condition p.a « 1[27], so higher level
terms of the gas parameter, and quantum



fluctuation is ignored. Combining Egs. (4) detD (k) =0 (10)

and (5) one finds the condensate density in Dispersion relation produced from
the lowest level approximation is Eq.(10) is

pe = &5 (6) (k) = [BE (WK L 5952 11

Next, the problem is considered in one (k) = W(W"’ ¢0) (11)
loop approximation, this means that the Eq. (11) shows that there is a Goldstone
quantum fluctuation is_taken into account. boson associating with U(1) breaking. In long
Denote two real fields ¢; and ¢, wavelength limit, the dispersion relation (11)
corresponding to the quantum fluctuations, becomes E(k) = hvsk, in  which v, =
the field operator can be expanded in term of \//V_m% is the sound speed.

the order parameter ¢, and the fluctuation

Using the interaction Lagrangian densit
fields as |27] Y ! I grang| Y

(8), the density of thermodynamical potential

¢ - ¢y + \/1_7 (P, +i¢,) (7) has the form [21, 27]
Plugging (7) into (1), the interaction 0= —ud? + g(pg + %fﬁ Tr In D~1(k) |
Lagrangian density in the one-loop (12)
approxmatlon is found out the notation
Lint = ¢0¢1 (¢1 + ¢2) 8)

. . (k) ==2:2 , is

From(8) and (3) one has the inversion Jo ! e g )3f( v k) _

propagator in momentum space employed In order to perform summation
over the Matsubara frequency, we use the rule

D~'(k) = (—+ 2005 w,, w",i : ) ©) [30]

in which k being the wave vector. The £

+° o In [wZ+ E?2(k)]=E(k) +

Matsubara frequency for boson is defined as 2 b _BEGO
w, =2mp™Y, B=kz'T™, (n=0, +1 g In[1-e7PF0]
n — ) - B ) - Y -5 ﬁ
+2...), kg being Boltzmann constant. Recast Thus the third term in right hand side of
that the Bogoliubov dispersion relation can be Eq. (12) reduces to
obtained by vanishing of the determinant of
the inversion propagator [29]
~J,Tr nD71(k) ——f(2n)3{8(k) +2In [1- @]} (13)

Substituting (13) into (12) one arrlves the relation of the thermodynamical grand canonical
energy density

0= —ugf + 205+ 1[5 E(K) + 5[ 25 In [1- e (14)
The physical meaning of the right hand 0, = 1 f(z i In [1 _e_ﬁg(;)] (17)

side of Eq. (14) is easy to recognized as B

following. is the thermal grand canonical energy
The two first terms density, which corresponds to the thermal
Diree = fluctuations.

—,uqb2+£¢4 (15) THE CASIMIR-TYPE EFFECT IN
0 270 AN IDEAL BEC GAS

energTyh in the Itree appro(;(imatior;; buti Bose gas occurs when temperature of the
e two last terms due to the contribution system below critical temperature T© =

of the fluctuations. In more detail, the third

term 3.31h2n2"* /mk,[28], where n, being the

g = atoms density. In this section, the influence of
1 the space compactification on the grand

(271)3 (k) (16) canonical energy of an ideal BEC gas is
'S the grand canonical energy density at zero considered in T < T? regime. This implies
temperature, which is  produced from that the system in phase with broken
depletion Ofcondensate, and the last term Symmetry, and the chemical potentia' is
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annihilated. Thus the grand canonical
ensemble defined by (17), with &(k) =
h?k?/2m. To deal with the Casimir effect,
we assume that the system is confined
betweem two parallel plates with the size
L,x L, in the (x,y)-plane and separating
atdistance ¢ along Oz — d irection. In the
“bulk” limit, L, - o0, L, > 00, £ — oo, grand
canonical energy of the system (17) has the
form

In [1-e?) = —%7, —, (19)
(18) becomes
]ABkZ
1 ATT
Q== 1y dkk?i—— — (20)

Perform mtegratlon over k, and then take
summation over j one obtains the density of
grand canonical energy

_ _ Sls/2) kg*ro/m
‘Qbulk (T) - 2y2m3/? 13

(21)

gk In the slab limit, this means that L, — oo,
O =5 [ dk k* In ll —e 1(18) L, — oo, while £ is finite, which leads to k,
; wave vector component is quantized as
here A, = ;’;2 is the de Broglie following
wavelength.
Using Taylor series
[LE iy pedkily g2 g2 g2 o= (i41/2)/L 22)
(em3 ¢“Jo 2 '’ i )
in which |14

{L = {¢/2m,i = 0,411,142 ... for anti- periodic BC,
L=+%/mi=0,2.. for Zaremba BC.

Using Eq.(17), quantization condition (22), and the rule (19) we arrive at the grand canonical
energy per an unit area of plate

J (2.2 AB(L'+1/2)2
Tam BRI+ 12

2. ) dky ky - : 23)

QWOIT, 0] =~ 30,

i 2(i+1/2)?
(2id) 1 - o e_ll-}_ﬂ(léki+13 :2/2
N+ [Tl'g]) = _ﬁ = Zj:l fo ko_ kJ_ j ’(24)
for anti-periodic BC and Zaremba BC, respectively. One can sees that (23) and (24) can be
rewritten in the forms

. - (3252 /1312 K2 /1131
n<A'ld>[T.€]=—$ o2ty dkua( At >> (25)

j Agi Ahi
,Q(Zld)[T f] 1 oo 1 J‘ dk kJ_ <€ 4n<ﬂBkJ_+(2L)2> _e <lBkJ_+ >> (26)

To evaluate Casimir energy, we now consider the quantity

2
J(ABkl+ Bl)

1991T,6] =32, zjzlj-, [ dk, ke 27)
Perform integral over k|, Eq (27) becomes

l2a2 ‘2 2
O e) = 550,50, he o =2 (3n, S ke 430, %), (28)

By employing Euler- Maclaurln formula in the from [31]
j xldx +3 (flal + flb])
a
1=

+=(fPp] - fP[al) ——(f<3>[ fOlaD+——F @bl - fPlal+... (29

720 30240
one finds
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2 2

o voo 1 —j%_n{[S/Zl_ﬂ 23 a? 3
' j=1j2 € T o« 60 T 15127 [@’] (30)
In which a=A1;/L , in thermal o 1 _% (39
equilibrium limit & « 1B[11)J The finite part =17 =5 (32)
of second term in the bracket of (28) is _Pluggmg (30) and (32) into (28) we
dropped out as following. With the help of arrive
gamma function definition, it is easy to find 1991r,0 =% ("5[ 2 _|_ _|_ 23a” > (33)
that /lB a 15121
o 1
= F[z] f dt te—Jt (31) By the same way above one find

Using the rule (29) to evaluate the
summation over j , and then perform
integration over t one gets

X2 1 [ _J {224 gl
]L(/I;i) [T,¢f] = ZZ}—[ d kJ_kJ_e ( Bki1+t (2L)2>
- 0

2m (ngls/2] | 49 |, 23(a/2)?
/1?3( (a/2) + 60 + 15127 ) (34)
Subtracting (33) from (34) one gets
d d ¢[5/2] 23a®
e 8 = 10000 = (- 0. )
Substituting (35) into (25), (26) we obtain
/2. 5/2,3/2
(Aid) _ _ 1 2m(ngls/2] 23a? _ ¢l5/2] ki ¢ 23mkgT
Q2 7, 4] ﬁ)tfg( a 20161‘[) N n3 252 ¢2 ' (36)
/ 5/2.3/2
(Z,id) _ _ 1 2m(mgls/2l 23 a? _ ¢[5/2] ky ¢ 23mkgT
2 [T.¢] 21 A% ( a 201671:) T 2yznd/? n3 2016 42" (37)

It is easily see that the first terms of (36) and (37) corresponding to bulk grand canonical
energy, which times (LxxLy)/V reduce to grand canonical energy density (21), where V is
volume of the system. The most importance are the second terms in bracket of (36) and (37), which
produce the Casimir energy, those are positive energies

(4id) 1 2m 23a® _ 23mkgT
2 T, ¢] = g 23 2016w 2522 (38)
__Q(Z ,id) [T f] 1 2m 2302 — 237rkBT. (39)

2nB /‘LZ 2016w 201642
From (38), (39) one finds the Casimir force acts on per unit area of the plate are repulsive force

(Ald
(Aid) _ o0 [T.] _ 23mkpT _ kgT
F; [T,¢] = EY, 26p3 0573 23 (40)
(Zld)
(Aid) _ 00 (T.¢] _ 23mkpT _ kgT
FC [T,¢] = v = Tooar® 0.0716—103 (41)

EQs.(40), (41) show that Casimir force with Zaremba BC is 1/8 times the Casimir force with
anti-periodic BC, that is similar to the ratio of massless scalar field [8].

Next, the Casimir force in an ideal Bose gas at temperature T <TC(°) for usual BCs is
established In this case, the wave vector is quantized as

[ o1y, f B k2 > k2 k2 K = /L, (42)
where [10]
L=+/2m, i=0,%+1,%2 ... for periodic BC,
L=*%/m i =0,1,2... for Neumann BC,
L=4%/n i =1,2 ... for Dirichlet BC.
By using (17), (19), and quantization conditions (42), the grand canonical energy per an unit
area of plate defined as

67



’(Azki+@>
QO[T L) = = 2= B2 o X ZfCdky ke v, (43)

2m ﬁ {=—oo
_J (52 kz_&%ﬂ
i 1 Oo Bkl
QN[ p| = T np Li= f dk ke ( v ) (44)
. A2 k2 2B
Q(D"d)[T,f]z—ﬁ D) f dk ke <“ L2>, (45)

for periodic BC, Neumann BC and Dirichlet BC, respectively. Combining (43) -(45) with (28),
(30), and (31), we obtain

5/2. 5/2 m3/2p

(Pid) __ 1z (N([S/Z] 230 ) _ _ Sls/2l kg _ 23mkgT
0 [T, 4] TN o VT isiam) = T2z = TR (46)
QNID [T p] = _LZ_”(M'[S/Z] Lo, BE ) _glsl KPTPmRe a9 k3m?m 23mkgr
AT a3\« 60 = 1s12m)  2yZn3/? h3 120m  h? 151242
(D,id) __ 1 o2m (n([S/Z] _ 49, 23a° ) _
’ SURY T, 4] 2np A% a 60 + 15121

_gls/2l kyPTSPmi2e a9 kT m 23mkpT (48)
NPIE 3 PET— T AR L I TP PP P PP PO PP PR PPPPRPPPRRPPPROPOS
It is easily to analyze that the first terms in Eqgs.(46), (47), (48) define bulk energy. The second

terms of Eqs.(47), (48) are surface energy, which is canceled out in (46). The Casimir-type energies
are identified by the last terms of them as

(Pid) _ _ 23mkgT kB;T
0" VIT 4] = — =5 ~ —0.3823 (49)
oM, Pl = o T, 4] = —213571’532 —0.04778%E, (50)
The Casimir-type forces identified through —a,0.[T, l]
(Pld)
(Pid) __oa [T, 4’] _ 46mkgT
F."[T, P] = = TN (51)
(N,id) _ (Djid) 90 "V[TL1 _ 23mkgT
FMOIT €] = F7 VT, P] = ——f——— = - =2 (52)
DISCUSSIONS the help of Taylor expansion, we only use
By inwoking statistic  mechanic Euler-MacLaurin formula for any range of i, ¢.
formalism with the helps of Poison and Moreover, not only the Casimir-type energy
Euler-MacLaurin summations, the authors and the Casimir-type force but also the surface
of Ref.[10] proved that the Casimir-type tension for any BCs were produced from
energy is defined as  ([3]k,T/nt? = Egs.(33) and (34).

—0.3826k,T/¥* for  periodic BC and
{[3]/k,T/8mt? ~ —0.04782k,T/¢>  for
Neumann and Dirichlet BCs. That is exactly
coincides with our results show in
Egs.(49), (50). Using the same way, the
authors of Refs.[14], [15] found
FMDT0 | = 3¢[3 1Ky T /213 ~

0.574k,T /€3 F\ XV T, €] = 3¢[3]k,T/
163 ~ 0.0717k 5T /€3 for the Casimir-type
force, which was recovered in Egs.(40), (41).
In Refs. [10, 14,15], the Casimir-type energy
as well as the Casimir-type force were
obtained by combining Poison summation and
Euler-MacLaurin summation for two regions
small and lager i, £. In which the results for
usual BCs (periodic, Neumann, Dirichlet) and
special BCs (anti-periodic, Zaremba) were
established separately. In our calculations, with

CONCLUSIONS

In the previous sections, we have been
established the thermodynamical grand
canonical energy of a weakly interacting Bose
gas, which is one of the basic theories to
studying of Casimir-type effect of Bose gas in
one loop approximation in both zero
temperature and finite temperature regimes.
The absence of chemical potential in grand
canonical potential implying that one-loop
approximation of quantum field theory only
suitable for area below critical temperature.
Which is the reason why in this paper the
effect in the region above critical temperature
has been not considered.

In the three dimension space compacted
along O z-direction, by a simpler way than the
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one before, we established explicit formulae of
the negative Casimir-type energy which arise
to the attractive Casimir-type forces for usual
BCs, and the positive Casimir-type energy
which arise to the repulsive Casimir-type
forces for special BCs. In which the Casimir-
type energy is proportional to £~2, which leads
to the Casimir-type force decay as £ 3. Beside,
the exactly surface tension for any BCs were
defined. The calculation method has been
mentioned in this studying as well as the
results produced from it will be the important
fundamentals for our studying of the weakly
interacting Bose gas in the future.
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LUC CASIMIR-TYPE CUA NGUNG TU BOSE-EINSTEIN LY TUONG
TRONG PHA POI XUNG BIPHA VO

Pham Thé Song', Pham Ngoc Thu?, L& Thj Thu Trang®
'Khoa Khoa hoc Ty nhién — Coéng nghé, Truong dai hoc Tay Bac

2Khoa Vdt Iy, Truong dai hoc sue pham Ha Ngi 2

T6m tat: Chang tdi nghién cizu hiéu izng Casimir-type trong hé ngung tu Bose-Einstein khong
twong tac bi gisi han giza hai ban song song trong mat phang (x,y) va cach nhau mét khodng £
doc theo truc z véi moi diéu kién bién. Trong d6, nang heong Casimir-type ty 16 véi €% ddn téi hé
qud lirc Casimir-type giam khi khodng cach gia hai ban ting theo quy udt €73,

Tir khoa: Bose gas; Casimir force; Finite size effect.
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