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Abstracts: We consider the Casimir‐type effect of an ideal Bose‐Einstein condensate (BEC) gas, 

which is confined by two parallel plates in the      ‐plane and separated by distance    along  ‐
direction for any boundary conditions (BCs). In which the Casimir‐type energy is proportional to 
    and the resulting in Casimir‐type force decay as       
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I. INTRODUCTION 

Beside studying of the attractive Casimir 
force      , researching the repulsive Casimir 

force is an interesting subject. They were 
considered in many systems, such as 

electromagnetic field [ ] , massless scalar 

field [   ]     BEC(s) gas [     ] . In 
the ideal BEC(s) area, the Casimir‐type effect 

was investigated in both grand canonical 

ensemble (GCE)             and canonical 
ensemble (CE)        . For imperfect 

BEC(s), the effect was first mentioned in      
for Dirichlet   , after that the forces 

corresponding periodic BC [17, 18], Robin 
BC [22], Zaremba   , and anti periodic BC 
[  ]  have been discovered, respectively. 
Although the Casimir‐type effect in an ideal 

BEC confined between two parallel plates has 

been investigated by many authors [     ]. 
But this paper aims to show a simpler and 

more explicit way to find out the Casimir‐type 

energy as well as Casimir‐type force, to our 
acknowledgment. Our paper is organized as 

follows: In Sec.II, we introduce the 
thermodynamical grand canonical energy of a 

weakly interacting Bose gas. The Casimir 
effect of a perfect BEC gas is substantiated in 
Sec.III. Discussions and Conclusions are 

given in Sec.IV and Sec.V, respectively, to 
close the paper. 

II. THE THERMODYNAMICAL 

GRAND CANONICAL ENERGY IN 1‐
LOOP APPROXIMATION 

The Casimir‐type effect in BEC arising 

from finite‐size effect of grand canonical 

potential [11]. In this section, the 
thermodynamical grand canonical energy of a 

weakly interacting Bose gas will be 
established. Let us begin with the Lagrangian 
density of a weakly interacting Bose gas [26] 

 =    (  
 

  
 

  

  
  )    ⃗     , (1) 

where 

 =       ⃗      
 

 
    ⃗                (2) 

is density of interacting potential,   and   

being the Planck constant and chemical 
potential. The coupling constant   

characterizes repulsive pair interaction 
strength between identical atoms, which is 

dependent on the  ‐wave scattering length   , 
and atomic mass   within formula   =
      /     [28]. The order parameter is 

determined by the expectation value of the 

field operator    ⃗    . 
Firstly, one considers the tree 

approximation, in which the quantum 
fluctuation is neglected. Let    be the 

expectation value of the field operator, 
minimizing the potential density (2) with 

respect to the field operator leads to the gap 
equation 

         
  =                                (3) 

In the broken symmetry phase, above 
equation gives 

  
 =  /                                               (4) 

Our system is considered in connection to 
a bulk reservoir of condensate, so that the 
chemical potential can be read as [27] 

 =    *   (√    
 )+                    (5) 

where    is bulk density of the 
condensate. The quantity     

  is called gas 

parameter that satisfies the diluteness 

condition     
    [  ] , so higher level 

terms of the gas parameter, and quantum 
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fluctuation is ignored. Combining Eqs. (4) 
and (5) one finds the condensate density in 
the lowest level approximation is 

  =   
                                                 (6) 

Next, the problem is considered in one 
loop approximation, this means that the 

quantum fluctuation is taken into account. 
Denote two real fields    and    

corresponding to the quantum fluctuations, 
the field operator can be expanded in term of 

the order parameter    and the fluctuation 
fields as      

     
 

√ 
                              (7) 

Plugging (7) into (1), the interaction 

Lagrangian density in the one‐loop 
approximation is found out 

    =
 

 
       

    
                       (8) 

        and (3) one has the inversion 
propagator in momentum space 

      = (
    

  
     

   
    

   

  
)  (9) 

in which  ⃗⃗  being the wave vector. The 
Matsubara frequency for boson is defined as 

  =          =   
         =        

         being Boltzmann constant. Recast 

that the Bogoliubov dispersion relation can be 

obtained by vanishing of the determinant of 
the inversion propagator [29] 

 e        =                                    (10) 
Dispersion relation produced from 

Eq.(10) is 

    = √
    

  
(
    

  
     

 )            (11) 

Eq. (11) shows that there is a Goldstone 

boson associating with      breaking. In long 

wavelength limit, the dispersion relation (11) 
becomes            in which   =

√ /    is the sound speed. 

Using the interaction Lagrangian density 
(8), the density of thermodynamical potential 

has the form [21, 27] 
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(12) 
the notation 

∫  
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     (    ⃗⃗)  is 

employed. In order to perform summation 
over the Matsubara frequency, we use the rule 
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Thus the third term in right hand side of 
Eq. (12) reduces to 
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Substituting (13) into (12) one arrives the relation of the thermodynamical grand canonical 
energy density 
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The physical meaning of the right hand 
side of Eq. (14) is easy to recognized as 
following. 

The two first terms 
     =

    
  

 

 
  
                                                    (15) 

characteristics the density of ground state 
energy in the tree approximation. 

The two last terms due to the contribution 
of the fluctuations. In more detail, the third 
term 

  =
 

 
∫

   ⃗⃗

     
 ( ⃗⃗)                                                  (16) 

is the grand canonical energy density at zero 

temperature, which is produced from 
depletion of condensate, and the last term 

  =
 

 
∫

   ⃗⃗

     
    *      ( ⃗⃗)+        (17) 

is the thermal grand canonical energy 
density, which corresponds to the thermal 

fluctuations. 
THE CASIMIR‐TYPE EFFECT IN 

AN IDEAL BEC GAS 

The broken symmetry phase of an ideal 

Bose gas occurs when temperature of the 

system below critical temperature   
   =

        
 / /   [  ] , where    being the 

atoms density. In this section, the influence of 
the space compactification on the grand 

canonical energy of an ideal BEC gas is 

considered in     
    regime. This implies 

that the system in phase with broken 
symmetry, and the chemical potential is 
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annihilated. Thus the grand canonical 
ensemble defined by (17), with     =
    /     To deal with the Casimir effect, 

we assume that the system is confined 
betweem two parallel plates with the size 
         in the (x,y)-plane and separating 

a    istance   along     irection. In the 

“bulk” limit,                , grand 

canonical energy of the system (17) has the 
form 

  =
 

    
∫      
 

 
    0    

  
   

  1(18) 

here   = √
    

    
 is the de Broglie 

wavelength. 
Using Taylor series 
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   ,                 (19) 

(18) becomes 
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Perform integration over  , and then take 

summation over   one obtains the density of 
grand canonical energy 

        =  
 [ / ]

 √   / 

  
 / 
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       (21) 

In the slab limit, this means that       
    , while   is finite, which leads to    

wave vector component is quantized as 
following 
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in which      

{
 =  /    =                 ‐  e          
 =  /   =               e       

 

Using Eq.(17), quantization condition (22), and the rule (19) we arrive at the grand canonical 
energy per an unit area of plate 
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for anti‐periodic BC and Zaremba BC, respectively. One can sees that (23) and (24) can be  
rewritten in the forms 
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To evaluate Casimir energy, we now consider the quantity 
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Perform integral over   , Eq.(27) becomes 
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By employing Euler‐Maclaurin formula in the from [31] 
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one finds 
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In which  =   / , in thermal 
equilibrium limit         ) . The finite part 

of second term in the bracket of (28) is 
dropped out as following. With the help of 

gamma function definition, it is easy to find 
that 

∑  
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Using the rule (29) to evaluate the 
summation over  , and then perform 

integration over   one gets 

∑  
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Plugging (30) and (32) into (28) we 
arrive 
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By the same way above one find 
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Subtracting (33) from (34) one gets 
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Substituting (35) into (25), (26) we obtain 
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It is easily see that the first terms of (36) and (37) corresponding to  bulk grand canonical 

energy, which times (     )/  reduce to grand canonical energy density (21), where   is 

volume of the system. The most importance are the second terms in bracket of (36) and (37), which 

produce the Casimir energy, those are positive energies 
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From (38), (39) one finds the Casimir force acts on per unit area of the plate are repulsive force 
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Eqs.(40), (41) show that Casimir force with Zaremba BC is 1/8 times the Casimir force with 

anti‐periodic   , that is similar to the ratio of massless scalar field [8]. 

Next, the Casimir force in an ideal Bose gas at temperature     
    for usual BCs is 

established. In this case, the wave vector is quantized as 

∫
   ⃗⃗
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    =  / ,                                                                  (42) 

where      

{
 =  /    =              e          
 =  /   =            Ne         

 =  /   =                 e     
 

By using (17), (19), and quantization conditions (42), the grand canonical energy per an unit  
area of plate defined as 
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for periodic   , Neumann   , and Dirichlet   , respectively. Combining (43) ‐     with (28), 

(30), and (31), we obtain 
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It is easily to analyze that the first terms in Eqs.(46), (47), (48) define    k e e   . The second 

terms of Eqs.(47), (48) are surface energy, which is canceled out in (46). The Casimir ‐type energies 

are identified by the last terms of them as 
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The Casimir‐type forces identified through      [   ]: 
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DISCUSSIONS 

By invoking statistic mechanic 
formalism with the helps of Poison and 
Euler-MacLaurin summations, the authors 

of Ref.[10] proved that the Casimir-type 
energy is defined as   [ ]   /  

  
          / 

   for  periodic BC and 

 [ ]/   /   
             / 

 for 
Neumann and Dirichlet BCs. That is exactly 
coincides with our results show in 
Eqs.(49), (50). Using the same way, the 
authors of Refs.[14], [15] found  

 
 

      [     =   [ ]   /   
  

        / 
    

      [   ] =   [ ]   /
               / 

  for the Casimir‐type 

force, which was recovered in Eqs.(40), (41). 

In Refs. [        ], the Casimir‐type energy 
as well as the Casimir‐type force were 

obtained by combining Poison summation and 

Euler‐MacLaurin summation for two regions 
small and lager     . In which the results for 

usual BCs (periodic, Neumann, Dirichlet) and 

special BCs (anti‐periodic, Zaremba) were 
established separately. In our calculations, with 

the help of Taylor expansion, we only use 

Euler‐MacLaurin formula for any range of     . 
Moreover, not only the Casimir‐type energy 

and the Casimir‐type force but also the surface 

tension for any BCs were produced from 
Eqs.(33) and (34). 

CONCLUSIONS 

In the previous sections, we have been 
established the thermodynamical grand 

canonical energy of a weakly interacting Bose 

gas, which is one of the basic theories to 
studying of Casimir‐type effect of Bose gas in 

one loop approximation in both zero 

temperature and finite temperature regimes. 
The absence of chemical potential in grand 

canonical potential implying that one‐loop 

approximation of quantum field theory only 
suitable for area below critical temperature. 

Which is the reason why in this paper the 

effect in the region above critical temperature 
has been not considered. 

In the three dimension space compacted 

along Oz‐direction, by a simpler way than the 
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one before, we established explicit formulae of 
the negative Casimir‐type energy which arise 

to the attractive Casimir‐type forces for usual 

     and the positive Casimir‐type energy 
which arise to the repulsive Casimir‐type 

forces for special    . In which the Casimir‐
type energy is proportional to    , which leads 
to the Casimir‐type force decay as    . Beside, 

the exactly surface tension for any BCs were 

defined. The calculation method has been 
mentioned in this studying as well as the 

results produced from it will be the important 

fundamentals for our studying of the weakly 
interacting Bose gas in the future. 
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Tóm tắt: Chúng tôi nghiên cứu hiệu ứng Casimir-type trong hệ ngưng tụ Bose-Einstein không 

tương tác  ị giới hạn giữa hai bản song song trong mặt phẳng (x,y) và cách nhau một khoảng     
dọc theo trục z với mọi điều kiện  iên. Trong đó, năng lượng Casimir-type tỷ lệ với     dẫn tới hệ 

quả lực Casimir-type giảm khi khoảng cách giữa hai bản tăng theo quy luật      
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