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Abstract. In this paper, we introduce a class of weighted energy in the class of m-
subharmonic functions oW, (€2). We also shown that this class is convex cone, stable under

maximum and oW, () < oF, (€2). Finally, we present a relationship between oF, (€2) and

the classes oW, , (€2) with k=1,...,m.
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1. Introduction

Let g=dd°|z|| be the canonical Kahler form

where d =6+ and d°=ﬁ, hence

of 0",
4

ddC:%aé. We denote by anzilﬁ” the
n

volume element of [1". The complex Monge-
Ampere operator (dd°.)" is well defined over
the class of locally bounded plurisubharmonic
(psh) functions, according to the fundamental
work of Bedford and Taylor in [1-2]. In [13],
Demailly generalized the work of Bedford and
Taylor for the class of locally psh functions
with bounded values near the boundary. In [7],
Cegrell then introduced a general class E(Q)
of psh functions on which the complex
Monge-Ampére operator can be defined.
Moreover, in [8] Cegrell introduced some
subclasses of & —PSH () functions and gave
some topology properties of these classes.
Some elements of the theory of
plurisubharmonic functions can be found in [1-
5,7-9, 13]. On the other hand, recently, in [6-
14] the authors have studied m-subharmonic
functions which are extensions of the
plurisubharmonic functions. The authors also
studied the complex m-Hessian operator
H_()=(dd°)™ A g"™ which is more general
than the Monge-Ampére operator. In order to
study the complex m-Hessian operator for m-
subharmonic functions which are not locally
bounded, in [11], Chinh introduced the Cegrell
classes F_ () and E (). Moreover, he
proved that the complex m-Hessian operator
is well defined in these classes. Some elements
of the theory of m-subharmonic functions and
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the complex Hessian operator, that will be
used throughout the note, can be found in [6-
20],... Morever, by the same idea of S.
Benelkourchi, V. Guedj and A. Zeriahi [4], in
[15] by using m-capacity, the author
investigated and introduced the classes
Fn.,(Q) and E,  (€) which are extention of
the ones were introduced by Lu Hoang Chinh
[10] for the class of m-subharmonic functions.

On the other hand, in [21], the authors
introduced the vector space &sF () and

equiped this space by a norm, which is defined
by using the m-Hessian measure. They have

proved sF_(©) is a Banach space and
F_ (<) isclosed in this space. Moreover, they

have shown that the topology defined by this
norm is stronger than the convergence in m-
capacity. Also, in [22], N. Thien has defined a

quasi-norm on the vector space JE,(€2) and
proved that this vector space with this quasi-
norm is a quasi-Banach space.

In this paper, we shall construct a new
class W, (€2) of weighted energy functions in

the class of m-subharmonic functions and
study some analysis properties of the delta m-
subharmonic functons class. Then, by using
the similar technique in [15], we introduce
delta weighted energy class of m-subharmonic

functions oW, (€2) and prove this class is
convex cone and stable under maximum and is
contained in oF, (Q) class. We also give a

relationship between oF (€2) and the classes
oW, . (€2) with k=1,...,m.



2. Preliminaries

Let 0 be a hyperconvex domain in(J". For a
twice continuously differentiable real function

uecC?(Q), the second order differential at a
fixed point z, eQ

g _
dd u:zgujjdzj Adz,

@ddu)" A" =mi(n—m)IH,_(u)A",V1<m<n

where H (u)= > 4,...4, Isthe Hessian
I<j<-<jp<n

of order m of the vector
A(u) = (A4, (u),..., A, (u) e0". Thus, the operator
(dd°u)™ A 8" ™, Vl<m<n, for twice
continuously differentiable functions is related
to the Hessian of the vector 1=(4,,...,1,).

2.1. The m-subharmonic functions

Now, we recall the class of m-subharmonic
functions introduced and investigated in [9]
recently. For 1<m<n, set

C,={nel gy nAB 207" A" >0},

where U ,, denotes the space of (1,1) -forms
with constant coefficients.
Definition 2.1. Let u be a subharmonic

function on an open subset Q1" Then, u is
said to be a m-subharmonic function on Q if

for every #,,....,7,, in T, the inequality
dduam A...An AL =0,
holds in the sense of currents.

is a Hermitian quadratic form. After an
appropriate  unitary  transformation  of
coordinates, it reduces to the diagonal form

dd°u =é[/11dzl AdZ, +--+ Adz, AdZ,],

where 4 (u),...,4, (u) are the eigenvalues of the
Hermitian matrix (u; ), which are real, i.e..

AU) = (A4 ),..., A ) en". It is easy to see
that

(2.1)

By SH, () (resp. sH, (<)), We denote the
cone of m-subharmonic functions (resp.
negative m-subharmonic functions) on o. Now
we recall the following definitions (see [9]).

For A=(4,...,24,)e0" and 1<m=<n define
S, (M= 2. Ay Ay,

I<ji<-<jp<n

Set

', ={S,20yn{S, 20}---n{S,, =0}
By H, we denote the vector space of complex
hermitian nxn matrices over 1. For aAcH, let
A(A) =(4,,...,.4,) 0" be the eigenvalues of A
Set

Sn(A) =S, (A(A)).

As in [13], we define
In={AecH: A(A) el }={S120}n---n{Sn >0}

Definition 2.2. Assume that
U,...,u, € SH_ () N Ly (). Then the complex

Hessian operator H,(u,,...,u,)
inductively by

is defined

ddu, A---Add®u A "™ =dd®(u,dd®u, ; A---Addu A BT

From the definition of m-subharmonic
functions and using arguments as in the proof
of Theorem 2.1 in [2], we note that

H,(u,...,u,) is a closed positive current of

bidegree (n—m+ p,n—m+ p) and this operator
is continuous under decreasing sequences of
locally bounded m-subharmonic functions.
Hence, for p=m, dd°u, A---Add°u, A B"™ isa
nonnegative Borel measure. In particular,
when u=u =---=u, eSH, ()L (Q) the
Borel measure
H,,(u)=(ddu)™ A g™,

is well defined and is called the complex
Hessian of u.
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2.2. The %) and F_(Q) classes

Next, we recall the classes E°(©) and F_(Q)
introduced and investigated in [11]. First we
give the following classes.

Let Q be a bounded domain in 1". Then Q is
said to be m-hyperconvex if there exists a
continuous m-subharmonic function
u:Q—0" such that O ={u<c}p Q for every

c<0. As above, every plurisubharmonic
function is m-subharmonic with m=>1. So,
every hyperconvex domain in p" is m-
hyperconvex. Let o <~ be a m-hyperconvex
domain. Set
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EX=E2(Q)={ueSH_(Q) L (Q): lim u(z) =0, me(u) < oo},

Fn=F.(@Q)={ueSH_(Q):3 Ejau,0 u, suijm(uj)<w},
I o

E, =E,(Q) ={ueSH,(Q):Vz, €Q,3 aneighborhood w4 z,, and ES 4 u,0 u on w,

where  H_(u)=(dd°u)" A p"™ denotes the
Hessian measure of  ueSH_(Q) L (Q).
From Theorem 3.14 in [11], it follows that if
uek, (Q), the complex Hessian

sup [H, (u;) <o}

H_(u)=(dd°u)™ A g"™ is well defined and is a
Radon measure on o. On the other hand, by
Remark 3.6 in [11], we may give the following
description of the class E_(Q):

E,.=E, (Q)={fueSH_ (Q):VUDbQ3IveF, (), v=u on U}

Now we recall the two weighted pluricomplex
energy classes of plurisubharmonic functions
defined in [2].

Definition 2.3. Let y:[J-—>[" be an
decreasing function and 1<m<n and Q is a

bounded m -hyperconvex domain in 0". We
define

Fo, (@ ={ueSH (Q):3 {u}<E;, u;0 uonQ
supe; (u;) :supj';((uj)(dd°uj)m "™ < +o0}
J J

Q
and

E,, (@ ={ueSH (Q):V KbQ3veF, ,v=u on K}
In the case y(t)=1 for all t<0, we get
Fon,(€2) (resp. E, () ) coincide with the
class F (©Q) (resp. E(Q2)) in [12]. Moreover, by
Proposition 4 in [18], E,  (©)cE,(Q)
provided that y(2t) <ay(t) for all t<0 with
some a>1. So by using similar technique in
[15] we can easily get the following result.

Proposition 2.4. If y(2t) <ay(t) forall t<0
with some a>1 then oF  (Q)cdF ()

(resp. O, ,(€2) = OE,(Q)).

3. The weighted capacity energy of m-
subharmonic functions

In this section, we shall study some property
of weighted capacity energy of m-subharmonic
functions. As a consequence, we introduce

some property of E, () and F (€2) class.
Before getting the first result of this section,
unless otherwise stated, throughout this
section, to simplify the notation we will write "
A~ B" if there exists a constant C >0 such
that A<CB, and " A~B " if there exists a
constant ¢;,0, >0 such that 6 A<B<J,A .

The following class of functions were
introduced in [18]

K={y:0~ —>0" isadecreasing function such that

~t2"()" tF®)" (1), vt <0}
As in [3], we put

€, (U) = [ 2(u)(@d u)" A B

Now we will show a basic properties of the
weighted energy class of delta m-subharmonic
functions that we will define in the following.

Definition 3.1. Assume that y:0 " —>0" is a

function satisfies the condition
y(2t)<ay(t),a>0 and »'(t)<0,Vt<O
Then we define

W, , =W, (Q) ={peSH, (Q):&](¢)

~
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T— 7'(=5)s"C._ (¢ < -S)ds < +oc}.
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We put 6W, =W, —W, .

Note that, the class W, is extension of
Cegrell class F, in [10] and in unweighted

space F_ [21].

Next, by Theorem 3.1 in [3], we shall prove
the main result of this paper.

Theorem 3.2. The classes oW, (€) are
convex and stable under maximum, ie if
peoW, () and weSH () then
max(e,y) € SW,, () Moreover,
oW, (Q) coF, ().

Proof. We only need to prove the Proposition
for W, ().

First, we only prove the stability under
maximum.

Step 1. We assume that »(0) =0. Set

2,0 1=Z(t)+(1_—jet),t<o.

Then y; is a strictly decreasing function,

1<1 <Z+l. and  y;(2t) <max(a,2).x, (t)
J

for every t<0. Let w=max(p,w) , hence

p<w . Moreover, since {w<-s}c{p<-s}
for every s >0 sowe have

[ 2,(@)dd°@)" A " = f 2, (=s)(dd @)™ A " ({0 < —s})ds

< —AT 5", (=5)C,, ({o < —s})ds

<m AT 2, (=8)(dd )" A B ({p < —s/ 2})ds

< —AT s" 7, (=5)C,, ({p < —s})ds

= Al 7,29)(dd°(2))" A "

< 2" max(a, 2)A| 7, (@)(dd°@)" A "

<2" max(a Al Lr(o) + S160°0)" 1 57°),

with A is a suitable constant.

Letting j—oo we get

[ 2(@)(dd° )" A 7" < 2" max(a, 2) A x(p)(dd )" A BT < +o0

= 2" max(a, 2) AI —7'(=s)s"C,, (¢ <—s)ds
0

~e;:((0)<+oo.
So w=max(p,y) e W, ,(€2).
Step 2. In general case we set
@, (t) =min(y(t);—jt) and approximately if

necessary. Then ®; are decreasing functions
such that @;(0)=0 and ®;J yx on (—x,0).
By first case, we have

[ @ (0)(dd°@)™ A 7 < 2" max(a, 2) A[ @ (p)(dd°p)" A B



Letting j — oo, We obtain

[ 2(@)(dd°)" A f" < 2" max(a, 2 Af Z(p)(dd°p)" A f" < 4o

= 2" max(a, 2) A j —7'(=5)s"C, (¢ <—s)ds
0

~ €7 (p) <+

So, once again @ =max(p,y) e W, ().
The convexity of W, (Q) follows from the

following: if g,y eW, () and 0<t,<1
then

{typ+A—t)y <—s}c{p<-s}u{y <-s}.
As above, we can assume that 4(0) =0, so we
have

[ 2@+ A-t)p)(dd° (typ + L—t )y )" A ™

< [ 2 (tp+ A=t)p)(dd° (typ + (L~ )y )" A ™

<-A f ", (=8)C ({p < —s})ds— A f s" 7, (=8)C,, ({w <—s})ds

< 2" max(a, 2) Al (x(p) e

Letting j—oo this yields ¢

Ao A p "+ [ ) +%)(dd°w)m AT,

[ 2tp+Q-t)p)(Ad° o+ At )" A B

< 2" max(a,2) Al 7(p)(dd°p)" A "+ [ 2 (w)(ddp)" A "]

=2"max(a, 2) A[T —7'(-=8)s"C, (¢ <—s)ds + T—Z'(—s)s”‘cm (v <—=s)ds]

_ ~e) (p)+e) (v) <+
Finally, assume (oeWm’Z(Ql). We can assume

without loss of generality ¢ <0 and »(0)=0.

Set ¢; =max(p,—]). It follows from Lemma
1in [2] that

[ 2(p)(dd )" A B = [ "=/ (=5)(dd°p))" A B (p; < —s)dls

< AIOM —'(=5)s"C, (@ < —S)ds < +0.

This shows that peF, () .

[1 Corollary 3.3. Assume that the assumption
of Proposition 3.2 is satisfied. Then the classes

oW, ,(€2) is aconvex cone in oF, (Q).
Before coming to the following result, we set
Zo®=x@) and for each k=1 , Ilet

t
;(k(t):—j;(k_l(x)dx. If yeK then it is easy
0

to check that X €K and
2O 207 2O

Finally, we give a new relationship
between oF, () and oW, (') class.
Theorem 3.4. Let O be a m -hyperconvex
domain in 0" and 1<m<n . Assume that
x €K such that »"(t)>0,vt<0. Then for
Q'DQ, we have

5, (@) c[|oW, , ().

k=1
Proof. In order to prove the Proposition, it is
necessary and sufficient that there exists a
constant C=C(®Y) such that
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[ 2@ uf (@dou)™ A g™ <Cf y(u)(ddu)" A ",
peE(©Q) and A>0  such that

holds for F_(€2). Indeed, we shall begin 2| —R? > Ag on o . Set

with showing that the (3.1) holds for h = max(| z|F —R?: Ap) then heE°(Q) and
0 ,

uek, () dd°h=dd°||z|P=p On &' . Then, we have

To do that, we choose R>0 large enough the following estimates

such that ||z|P<r? on . We fixed
[ 2(u)lu [ (ddu)™* A (dd°h)* A B
>

< [ () |uf (ddu)™ A(ddehy A g™

- j 2,U)(dd°u)™* A (dd°h)* A g7
By integration by parts we have ¢

[ 2 (W)(ddu)™* A (ddh)* A g7
Q = [h(dd‘u)™*dd® z, (u) A (dd"h)** A g™
B T h(dd“u)™* [z (u)du A d“u+ 7 (u)dd u] A (dd"h) ™ A g™
S Thz& (U)(dd“u)™ " A (ddh) A BT

<hill o [ 2ca(ddou)™™ A (ddh) A g
Q

<hi o [ 2u)(ddou)™ Ao,
Hence,%if we set C =C(Q) =k!||h]*. . then

L (Q)
C | x(u)(ddu)" A B = [ (u)|u [ (dd°u)™* A(dd°h)* A g™
Q Q
> [ 7(u)|ul* (@dd°u)™* A(dd°h)* A g™
2
= [ 2@ uf (dd°u)™* A(dd° || z[P) A ™.
2
Next, we prove (3.1) holds for ueF  (€?). Indeed, we take u; eEp(),u; 0 u on Q such that
sup j 2(u;)(ddu,)™ A BT < oo,
=1y

By dominated convergence theorem and (dd°uj)”‘*k/\(ddC Il z|H)"™* is weakly convergent to
(dd®u)™ ™ A (dd® || z |[?)"™* in the sense of currents, we have
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[ 2(u)[uf (ddu)™™* A(dd® || z|?)"
5

<timinf [ (u;)u; [ (dd°u)™* A(dd" || z|P)" "
i

<timinf [ 7(u;) [u; [ (dd°u;)™™ A (dd°h)* A (dd® || z|)"™"
]
Q

< Csup'[;((uj)(dd°uj)m A(dde ]| Z]H)"™ < 4.
I o

Finally, the assertion of the Proposition follows from (3.1) and this completes the proof. [
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MOT SO TINH CHAT CUA MOT SO LOP HAM DELTA m-PIEU HOA DUOI
Vi Tién Thanh! , Dwong Manh Linh? and Kaovangliayor Bounthanh

i ruwong Pai hoc Tay Bic

27 rwong Cao dcfng Son La

Tom tdt: Muc dich cua bai bao nay la gidi thiu mét 1ép ham delta m-diéu hoa duwdivéi nang

hrong ¢ trong SW,  (Q). Dong thoi chiing t6i ciing chi ra lép ham da dwa ra la mét non loi, on

dinh véi phép toan ldy max va oW, (Q) = 6F,, () . Cudi ciing chiing t6i dira ra mét moi quan hé
giira oF , () vacac lép ham oW, () véik=1...,m..

_ Tir khoa: Ham da diéu hoa dudi, ham m-diéu hoa dudi, delta m-diéu hoa duwéi, mién m-siéu
loi, toan tur m-Hessian, toan tu- Monge-Ampere, ham trong, m-dung tich.
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