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1. INTRODUCTION 

In this work, we consider the following 
stochastic integro-differential equation with 
infinite delays 
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here the unknown function u  takes values in a 
Banach space X , A  is a sectorial operator of 

type ( , )   which will be defined below, 

:[0, )f X  B , 0

2:[0, ) ( , )g Y X L , 
HW  is a fractional Brownian motion with 

1
( ;1)
2

H   on a real line and a separable 

Hilbert space Y ,  ( )tu u t   is the delay term 

with the interval of delay time [ ,0] , and 

( ) ( )u s s  is the initial datum. Our objective 
is to verify the existence of mild solution to 

problem (1.1) with the state space B . To our 
knowledge, this is the first study of the 
existence of mild solutions to considered 
problem.  
 The fractional Brownian motion (fBm for 
short) is a family of centered Gaussian 
processes with continuous sample paths 

indexed by the Hurst parameter (0,1).H   It is 
a self-similar process with stationary 
increments and has a long-memory when 

1

2
H  . These significant properties make 

fractional Brownian motion a natural 
candidate as a model for noise in a wide 
variety of physical phenomena, such as 
mathematical finance, communication 
networks, hydrology and medicine. For more 
details on fBm, we refer the readers to the 
articles [1, 2, 3, 8]. It is worth pointing out 
that, there are only a small number of results 
about the existence of decay solution in mean 
square moment to the stochastic differential 
equations with infinite delays. Therefore, it is 
necessary to develop and explore the existence 
criteria with these types of equations. 

2. PRELIMINARIES 
2.1.  Resolvent operators 

Let ( )XL  be the space of bounded linear 
operators on X . We recall some notions and 
results on resolvent operators related to our 
problem. 
Definition 2.1.1. Let A  be a closed and linear 
operator with domain ( )D A  on a Banach 
space X . We say that A  is the generator of 

an  -resolvent if there exists   and a 

strongly continuous function : ( )S X

 L  

such that { : Re } ( )A      and 

1 1

0
( ) ( ) ,

Re , .

tI A x e S t xdt

x X

  

 

 


   

 


 

A case ensuring the existence of  -resolvent 
was discussed in [4]. Specifically, let A  be a 
closed and densely defined operator. Assume 

that A  is a sectorial of type ( , )  , that is, 
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there exist , (0, ), 0
2

M


     such that 

its resolvent lies in 
,\    and 

1

,( ) , ,
| |

M
I A   

 

  


‖ ‖  

Here 
, { : ,| arg( ) | }.             In 

the case 0 (1 / 2)     , ( )S   exists and 

has the following formula: 

  1 11
( ) ( ) , 0,

2

tS t e I A d t
i

  




  


     

where   is a suitable path lying outside ,  . 

Furthermore, we have the following assertion 

for the behavior of ( )S   which has been 

proved in [4, Theorem 1]. 
Proposition 2.1.1. Let A  is a sectorial of type 

( , )   and 0 (1 / 2)     . Then there 

exists 0C   independent on t  such that 

    ( )
1

C
S t

t
 




‖ ‖    

 (2.1) 

for 0t  . 
2.2. Phase spaces 
In this work, we will deploy the axiomatic 

definition of the phase space B  introduced by 
Hale and Kato in [5]. 

Let B  be a linear space of functions mapping 
( ,0]  into Bannach space X  endowed with 

a seminorm | | B  and satisfying the following 

fundamental axioms. If a function 
: ( , ]y T X    such that 

[ , ]| ([ , ]; )Ty C T X       and y B , then  

  (B1) ty B  for [ , ]t T   ; 

  (B2) the function tt y  is continuous on 

[ , ]T  ; 
  (B3) 

| | ( ) sup ( ) | |t
s t

y K t y M t y


 
 

   B B‖ ‖ , 

where , :[0, ) [0, )K M    , K  is continuous, 

M  is locally bounded, and they are 
independent of y . 

  (B4) there exists 0ñ  such that 

(0) | |  Bñ‖ ‖ , for all B . 

We give here an examples of phase spaces. 
For more examples, we refer to the book by 
Hino, Mukarami and Naito [7].      

{ (( ,0]; ) : lim ( ) exists in },C C X e X




  


  

(2.2), where   is a positive number. This 
phase space satisfies (B1) - (B3) with  

   ( ) 1, ( ) ,tK t M t e    (2.3) 
and it is a Banach space with the norm 

0

| | sup ( ) .e



  


B ‖ ‖  

2.3. Fractional Brownian motion 
We first recall the definition of Wiener 
integrals with respect to an infinite 
dimensional fractional Brownian motion with 

Hurst index 
1

2
H   (see [8]).  

Let ( , , )P F  be a complete probability space 

with a normal filtration [0, ]{ }t t TF  and 0T   

be an arbitrary fixed horizon. A one-
dimensional fractional Brownian motion 
(fBm) with Hurst parameter (0;1)H   is a 
centered Gaussian process 

{ ( ),0 }H H t t T     with the covariance 
function  

         
2 2 2

( , ) [ ( ) ( )]

1
(| | | | | | ).

2

H H

H H H

R t s E t s

t s t s

 

   
 

It is known that ( )H t  with 
1

2
H   admits the 

following Volterra representation 

0
( ) ( , ) ( )

t
H t K t s d s    

where   is a standard Brownian motion and 

the Volterra kernel ( , )K t s  is given by 

    

1
3

2
2( , ) ( ) ; .

H
t H

H
s

u
K t s C u s du t s

s


  

   
 

  

For the deterministic function 
2([0; ])L T , 

the fractional Wiener integral of   with 

respect to 
H  is defined by

 *

0 0
( ) ( ) ( ) ( )

T T
H

Hs d s K s d s     , 

where * ( ) ( ) ( , )
T

H
s

K
K s r r s dr

r
 




 . 

Let Y  be a real, separable Hilbert space and  

( , )Y XL  be the space of bounded linear 
operators from Y  to X . For the sake of 
convenience, we shall use the same notation to 

denote the norms in X , Y  and ( , )Y XL . Let 

{ ; 1,2,...}ne n   be a complete orthonormal 

basis in Y  and ( , )Q Y YL  be an operator 

defined by n n nQe e  with finite trace 

1

n

n

trQ 




   , where ; 1,2,...n n   are non-

negative real numbers. We define the infinite 
dimensional fBm on X  with covariance Q  as 
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1

( ) ( )H H

n n n

n

W t e t 




 , where ( )H

n t  are 

real, independent fBm‟s. This process is a X -
valued Gaussian, it starts from 0, has zero 
mean and covariance: 

   ( ), ( ), ( , ) ( ), ,H HE W t x W s y R t s Q x y

for all ,  and , [0; ].x y Y t s T   
In order to define Wiener integrals with 

respect to the Q-fBm ( )HW t , we introduce the 

space 0 0

2 2: ( , )Y XL L  of all Q -Hilbert-Schmidt 

operators :Y X  . We recall that 

( , )Y X L  is called a Q -Hilbert-Schmidt 

operator if 0
2

2

1

| | ||n n

n

e  




  L
‖ ‖  and 

that the space 0

2L  equipped with the inner 

product 0
2

1

, ,n n

n

e e   




    L
 is a separable 

Hilbert space. 
The fractional Wiener integral of the function 

0

2:[0; ] ( , )T Y X L  with respect to Q -fBm is 

defined by 

0 0
1

*

0
1

( ) ( ) ( ) ( )

( )( ) ( ),

t t
H H

n n n

n

t

n H n n

n

s dW s s e d s

K e s d s

   

  













 



(2.4), where n  is the standard Brownian 

motion used to present H

n . We have the 

following fundamental inequality, which can 
be proved by similar arguments as [2, Lemma 
2] and [3, Lemma 2]. 

Lemma 2.3.1. If 0

2:[0; ] ( , )T Y X L  satisfies 

0
2

2

0
( )

T

s ds  L
‖ ‖  then the  sum in (2.4) is 

well defined as an X -valued random variable 
and for any  , [0, ]T     with   , we 
have 

      

0
2

2

2 1 2

( ) ( )

2 ( ) ( ) .

H

H

E s dW s

H s ds











   



 L
‖ ‖

 

3. MAIN RESULTS 
In order to study the existence of mind 
solutions to problem (1.1).  Let B , we 
define the space   

2{ ((0, ); ( , )) :

(0) (0)}, }BC

u C L X

u u





   

  

BC

‖ ‖
,  

clearly that it is a Banach space with the norm 
2 2

0

sup ( ) .BC
t

u u t


‖ ‖ ‖ ‖  We denote the set 

,

2

0

( ) { : ,

sup ( ) }

R BC

t

B y y R

t E y t



 








  



BC ‖ ‖

‖ ‖
 

where (2 1) 0H      and numbers 

, 0R    are given. Then 
, ( )RB

   is a closed 

convex subset in BC .  

For  v BC , we define the function 

[ ]:v X   as follows 

( ), 0,
[ ]( )

( ), 0.

t t
v t

v t t




  
 


 

Then, clearly

 
( ), ,

[ ] ( )
( ), [ ,0].

t

t t
v

v t t

  
 

 

    
 

  
 

In this work, we use the following definition 
of solution to (1). 
 

Definition 3.1 Given B . A X -valued 

stochastic process { ( ), }u t t  is called a mild 
solution of (1.1) if    

(i)  2(0, ), ( , )u C L X   , 

(ii) ( ) ( ), 0u t t t  . 

(iii) For arbitrary 0t  , we have                                        

0

0

( ) ( ) (0) ( ) ( , )

( ) ( ) ( ) . .

t

s

t
H

u t S t S t s f s u ds

S t s g s dW s a s

 



  

  



 P

 

Now we consider the operator  
 

0

0

: ,

( )( ) ( ) (0) ( ) ( , )

( ) ( ) ( ).

t

s

t
H

v t S t S t s f s v ds

S t s g s dW s

 

 







  

 





BC BCF

F

 

It is clear that if v  is a fixed point of F  then 
[ ]v   is a mild solution to (1.1). 

Concerning problem (1.1), we give the 
following assumptions:  

(B) The phase space B  obeys (B1) - (B4) such 
that the functions K  and M  are uniformly 

bounded and 
2

0

( )s M s


  . 

(F) The map :f X  B  and there exists 

a function 
1 ( )locL   such that for every 

,x yB  we have 
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2 2( , ) ( , ) ( ) | | ,Xf t x f t y t x y   B‖ ‖  for a.e. 

t  . 

(G) The map 0

2: ( , )g Y X L  satisfies 

0
2

2

0
( ) .t g t dt



  L
‖ ‖   

As a consequence, we have the following 
result. 
 
Lemma 3.1. Let (F), (G) and (B) hold. Then 
there exist two positive real numbers R  and   

such that 
, ,( ( )) ( )R RB B 
  F , provide that 

 2

0 00

sup 6 ( ) ( ) ( ) ( ) 1.
t t

t

S t s ds S t s s K s ds  


     ‖ ‖ ‖ ‖  

(3.1) 
Proof 
Here we recall that

0

0

( )( ) ( ) (0) ( ) ( , )

( ) ( ) ( ), 0

t

s

t
H

u t S t S t f s u ds

S t g s dW s t

 



 

 





F

 
First, we prove that there exists a number 

0R   such that ( )R RB BF  , where RB  is the 

ball in BC  centered at origin with radius R . 

Assume to the contrary that for each n , 

there exist nu BC  and ( )n nz u F  

satisfying that 2

0

sup ( )n
t

E u t n


‖ ‖  but 

2

0

sup ( )n
t

E z t n


‖ ‖ . From the formula of F ,  

we have 
                      

2 2

2

0

( ) 3 ( ) (0)

3 ( ) ( , )

n

t

ns

E z t E S t

E S t s f s u ds







 

‖ ‖ ‖ ‖

‖ ‖
   

               2

0
3 ( ) ( , ) ( )

t
H

nsE S t s g s u dW s ‖ ‖   

                    1 2 3( ) ( ) ( ),I t I t I t    

where 

   

2

1

2

2
0

( ) 3 ( ) (0)

( )

,

,3 ( ) ( , )
t

ns

I t E S t

I t E S t s f s u ds







 

‖ ‖

‖ ‖
     

   2

3
0

( ) 3 ( ) .( , ) ( )
t

H

nsI t E S t s g s u dW s ‖ ‖  

Denote 
0

sup ( )
t

S S t 





 ‖ ‖ , we have   

   2 2

1( ) 3( ) (0)I t S E  ‖ ‖     (3.2) 

And using Holder's inequality and assumption 
(F), we have

2

2
0 0

( ) 3 ( ) ( ) ( , )
t t

ns XI t S t s ds S t s E f s u ds    ‖ ‖ ‖ ‖ ‖ ‖

 

 2

0 0
3 ( ) ( ) ( ) | |

t t

nsS t s ds S t s s E u ds      B‖ ‖ ‖ ‖ . 

Because of the fact that. 

[0, ]

| | ( ) sup ( ) ( ) | | .t
r t

u K t u r M t 


 B B
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2

2
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2 2 2 2
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| | ( ) sup ( ) ( ) | |

2 ( ) sup ( .) 2 ( ) | |

s
r s
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B B
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So, we have 
2 2

2
0 00

2 2

0 0

2 2

0 0

( ) 6sup{ ( ) } ( ) ( ) ( ) ( )

6 | | ( ) ( ) ( ) ( )

6 | | ( ) ( ) ( ) ( ) ,

t t

n
t

t t

t t

I t E u t S t s ds S t s s K s ds

E S t s ds S t s s M s ds

n E S t s ds S t s s M s ds

 

 

 



 

 





  

  

    

 

 

 

B

B

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

(3.3), where 

 2

0 00

sup 6 ( ) ( ) ( ) ( )
t t

t

S t s ds S t s s K s ds  


    ‖ ‖ ‖ ‖

. 
Because of Lemma 2.3.1 and assumption (G), 
we have

0
2

0
2

0
2

2 1 2 2

3
0

2 1
/2

2

0

2 2 2 2 1 2

/2

( ) 6 ( ) ( )

6 ( ) ( )

1 ( )
2

2 ( ) ( ) .

t
H

H
t

t
H H

t

I t Ht S t s g s ds

t
HC S t s g s ds

t

H S t s s g s ds














 

 

 



 







L

L

L

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

(3.4) 
Combining (3.1) - (3.4) we obtain  

2( ) ( )nE z t n Q t  ‖ ‖ ,  

where 
2 2 2

2 2

0 0

( ) 3 ( ) | |

6 | | ( ) ( ) ( ) ( )
t t

Q t S E

E S t s ds S t s s M s ds



 



 



   

B

B

ñ
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0
2

0
2

2 1
/2

2

0

2 2 2 2 1 2

/2

6 ( ) ( )

1 ( )
2

2 ( ) ( ) ,

H
t

t
H H

t

t
HC S t s g s ds

t

H S t s s g s ds










 

 



 





L

L

‖ ‖ ‖ ‖
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be a uniformly bounded function, thanks to 

assumptions (B), (G), ( )S t  is uniformly 

bounded and the fact that    

   
0 00 0

00

sup ( ) sup ( )

sup .
1

t t

t t

t

t

S t s ds S r dr

C
dr

r
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Hence 
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2

0 0

( ) ( )
1 sup sup .n

t t

E z t Q t

n n


 

  
‖ ‖

 

Passing to the limit in the last inequality as 

n, we get a contradiction with (3.1). 
Second, we prove that there exists 0   such 

that 
, ,( ( )) ( )R RB B 
  F . Assume to the 

contrary that for each n  there exists 

n Ru B  satisfying that 2

0

sup ( )n
t

t E u t n



‖ ‖  

but 
,( ) ( )n n Rz u B n
 F , it means that  

2

0

sup ( )n
t

t E z t n



‖ ‖ . For 0t  , we have
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2
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3
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Considering  ( ) , 0,
1

C
S t t

t
 

  


‖ ‖ then 
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1 2

(0)
( ) .

(1 )

t C E
P t
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 (3.5) 
Through assumptions (F), we have 
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 (3.6) 
In addition, 

0
2

2 2

3
0

( ) 2 ( ) ( ) ,
t

P t Ht S t s g s ds

  L
‖ ‖ ‖ ‖  it's 

because of that (2 1)H    . 

Similar to previous estimate, ones get

0
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3
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(3.7) 
Combining (3.5)- (3.7) we obtain  

  2( ) 3 ( ),nt E z t n G t
  ‖ ‖   

 (3.8) 
where 
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which is uniformly bounded. It follows from 
(3.8) that 

 
2( ) 1

1 3 ( ) .nt E z t
G t

n n



  
‖ ‖

 

We get a contradiction with (3.1) by passing to 
the limit in the last inequality as  n . The 
proof is complete. 
  
Theorem 3.1.  If conditions in Lemma 3.1 
hold, then the mild solution to (1.1) exists 
uniquely and decays to zero in mean square 

moment, i.e., 2( ) 0,  as .E u t t ‖ ‖  

Proof 

First of all, for  2 2[0, ), ( , )u C L    we 

check that the mapping ( )( )t u tF  belongs 

to the space  2 2[0, ), ( , )C L  . To do that, 

let 1 2, 0t t  . We have

1 2

1

2

1

2

1 2
0 0

2

1 2
0

2

2 1 2

( ) ( ) ( ) ( ) ( ) ( )

2 ( ( ) ( )) ( ) ( )
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H H

t
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t
H

t

E S t s g s dW s S t s g s dW s

E S t s S t s g s dW s

E S t s g s dW s J J

 

 



  

   

   

 




 

Applying Lemma 2.3.1 to 1J , 
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It can be considered that 1t  is fixed and 

2 1t t h  . Denote 

       
0
2

2
2

1 2( ) ( ) ( ) ( ) ,h s S t s S t s g s    
L
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then  ( ) 0h s Q  as 0h  for all 1(0, )s t . 

 In addition 

0
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0
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1
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h s S t s S t s g s
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Q
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we conclude, by Lebesgue dominated 
convergence theorem that, 

                 
1

0
( ) 0 as 0.

t

h s ds h  Q  

It leads to 1 0J   when  2 1| | 0t t  . Now 

applying Lemma 2.3.1 to 2J  we obtain
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when 2 1| | 0t t  . The proof is therefore 

complete, thanks to the continuity of 

( ) (0)t S t   and 
0

( ) ( , )
t

st S t f s u ds  .  

To get desired results, it is enough to show that 

the operator F  has a unique fixed point in  

, ( )RB

  . For ,u v BC  and the formula of 

F , we have
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Noting that 
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thanks to assumption (B). Then 
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t t

r s

S t s ds S t s s K s E u r v r ds  
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 2 2

0 0 0
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t t

t

S t s ds S t s s K s ds E u t v t  


    ‖ ‖ ‖ ‖ ‖ ‖

2

0

1
sup ( ) ( ) .

6 t

E u t v t


  ‖ ‖         (3.9) 

By the estimate (3.9), we obtain that

 2 21
( ) ( ) .

6
BC BCu v u v   F F‖ ‖ ‖ ‖

 The last relation ensures that the 

solution operator F  is a contraction mapping 

on BC . By Lemma 3.1 we have the 

conclusion due to Banach fixed point 
principle. 
 
Remark 3.1. The assumptions (A), (F), (G) 
are very popular in the context of solvability 

problems. Consider the phase space CB  

with   is a positive number, where the norm 

in B  is given by 
0

| | sup ( ) .w e



 


B ‖ ‖  

Thanks to the formula (2.3), we have 

( ) 1, ( ) .tK t M t e    
So one observes that K  and M  are uniformly 

bounded, 
2

0

( )s M s


   and then assumption 

{\bf (B)} is satisfied with 
2( ) (1)M t o  as 

t  . Condition (3.1) will be satisfied with a 

suitable function 1 ( )locL  . For example, 

we can choses ( )
1

t
t

 


ò
 with 0ò  is small 

enough. 
  
4. CONCLUSION 
In this paper, we prove that the mild solution 
to (1.1) exists uniquely and decays to zero in 
mean square moment by applying the fixed 
points method. After that, we give a remark to 
the abstract results.  
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