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Abstract: Within framework of the Bogoliubov theory of a dilute Bose gas, we investigate
quantum fluctuation energy of one component weakly interacting Bose-Einstein condensate (BEC)
gas confined between two parallel plates at zero temperature in grand canonical ensemble (GCE).
The Casimir forces corresponding to Neumann, Dirichlet, Robin and periodic boundary conditions
(BCs) of the k,-wave vector component are compared to the one obtained by quantum field theory

(QFT).
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I. INTRODUCTION
Based on the Casimir’s original calculation
method [1], D.C. Robert and Y. Pomeau studied
of Casimir effect in a dilute homogeneous BEC
gas, that is restricted between two yery large
parallel plates separated by a distance £[2,3]. In
which, Dirichlet BC is imposed to the k,-wave
vector component, and the Casimir energy is
defined by subtracting excitation energy
corresponds to continuous momentum spectrum
from excitation energy corresponds to discrete
momentum spectrum. This studying found out
the well-known relation of Casimir pressure is
pc = —m?hv,/480¢*, where h is the Planck’s
constant, v, is the speed of sound in the system.
By this way, the authors of Ref.[4] proved that
pc = —m*hv,/30£* for periodic BC. These
authors also developed multidimensional cut-
off technique to solve Casimir effect problem
in massless scalar field [5]. Later, the result in
Ref.[4] was recovered within QFT framework in

one-loop approximation, and series expansion of
excitation energy about small value of ¢ /£[6],
where & being healing length of condensate [7].
In Ref.[8], by applying the Hamiltonian
formalism, the results in Refs.[2, 3, 4] once again
confirmed, moreover higher terms of the Casimir
pressure were calculated by zeta-functional
regularization method. By using QFT combine
cut-off momentum, N.V.Thu [9] obtained the
result exactly coincides with the ones given in
Refs.[3, 4]. Recently, we not only obtained a
similar result [10] but also developed the
calculating to the double-bubble approximation
within ~ framework of  Cornwall-Jackiw-
Tomboulis (CJT) effective potential in improyed
Hartree—Fock approximation (IHF) [11]. In one-
loop approximation, Casimir effect in two
components Bose-Einstein condensate gas was
first attained by N.V. Thu et al in Ref.[12].

The aim of this paper is to studying of the
Casimir effect in a weakly interacting Bose-

Einstein condensate gas at condensate phase



based on Bogoliubov theory, and comparing
the results with the ones were defined by using
QFT before. The paper is organized as follows.
In section 2, quantum fluctuation energy of a
weakly interacting Bose gas is investigated in
symmetry broken phase. The Casimir effect is
considered in section 3. Conclusions are given
in section 4 to close the paper.

I. THE QUANTUM FLUCTUATION
ENERGY OF WEAKLY INTERACTING
BOSE GAS

In this section we consider the quantum
fluctuation energy of a weakly interacting
Bose gas in infinite three-dimension space.
According to the Bogoliubov theory [7],
quantum fluctuation energy of a dilute boson

gas at zero-temperature reads as

£1(K) = 2 Ticso [£00) — gno — T 4 LMD, (1)

In which, k being the module of the wave

vector k, g = 4mh?ay;m™1 > 0 determines the
strength of repulsive interaction between two
intraspecies atoms, a, being s-wave scattering
length, m is atomic mass, n, is identical atoms
density,

{09 = [22(2 1 29m,)

2m
defines elementary excitation in the system,
that called Bogoliubov dispersion relation [10,
12]. Recently, Eq.(2) also found out by
different methods. For examples, within
perturbatiye framework of QFT [13], CJT

formallsm [14,11]. In dilute (weakly
interacting) Bose gas, the diluteness condition
is required, this means that nya « 1[13].
Assume that the system in the box V =
Ly X Ly, X L,, from now on one notes £ = L,.
For simplicity, the wave vector is assumed
satisfies Neumann BC has the form [15]

k= [kz+kz+K2 (3)
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Plugging (2), (3) and (4) into (1) yields
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In infinite space, namely (L,, Ly, ¥) — oo, triple sums in Eq.(5) can be replaced by triple integrals.

Eq.(5) is rewritten as
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Apply changing of variable method by setting: x = Li y=—,Z
1LyL, ¢ h2(x2 + y2 + z2) (h2(x2 + y? + 22)
q - 7 _
EUKk) = i fdxf dyfd[\] o ( - +2gn0>
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In spherical coordinate, Eq.(7) has the form
xLly tm h2r2 (h2r2 h2r?2 | m(gng)?
£100 =3 L e | [ (50 + 20m) —om = 5 ®
where r? = x% + y? + z2.
Perform above integral over r € [0, 4], and takes limit A — oo one finds
Elk) = ZgnOV 1152\/8— noa3 = ZgnoN 1152\/8— noas, 9)

Il. THE CASIMIR EFFECT

In order to deal with the Casimir effect, we
assume that the system is confined to two
parallel plates of area L, XL, , they are
perpendicular to Oz-axis and separated by a
distance #. In the following, one only discusses
finite-size effect along z-direction, this means
that £2 « L, x L, . Furthermore, distance

between plates has to be enough for

manifestation of quantum fluctuation [4],

namely £/&> 1 , where & = h/\[2mgn, .
Note that the system is considered in GCE, this
means that it is connected with a bulk reservoir
of condensation with condensate density equal
to n,.

Owing to compactification of z -direction,
Eqg.(5) become

1L L T h2(x? + y? + n?n2/€?) (h2(x?2 + y? + n2nZ/£?)
q
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In polar coordinate, Eq.(10) reads as
1Ly ly o © h2(r2+n2nZ/p) (h2(r2+n2nZ/¢2)
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in which 72 = x2 + y2.



Integrating over r € [0, A] of (11), and take limit A — oo yields
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By employing Euler-Maclaurin formula in the form [17]
Yo f [n] = J) f [xldx + (f[] fleoD + 5 (f(l) — f®1[o1)
—%(f(”[oo] — £®[0]) +m(f(5)[oo 1- 91 0)] (13)
with f[n,] = €9(k), Eq. (12) produces
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Recast that the volume of the systemis V = L, X L,, X £,and v,

=/ gno/m is speed of sound. Using

Eqg.(14) one can defined quantum fluctuation energy per an unit area of plates is
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In the cases either periodic BC, Dirichlet BC, or Robin BC is imposed, the k,-component of the wave

vector is quantized as following [9, 15]

k, =n,/L
with L =¢/2mn,n, = 0,+1,+2 ...for periodic BC, L =¢/m, n, =1,2...

(¢ +¢/V2)/m, n, = 1,2 ... for Robin BC.

(16)
for Dirichlet BC, L =

Based on the Eq.(15) and quatizion condition (16), the quantum fluctuation energy per an unit area

of plates correspond to periodic BC, Dirichlet BC, and Robin BC, respectively, are defined as

(P) — 1
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In the case the two walls do not exist, which
leads to quantization condition of the waye
yector is canceled out, thus Egs.(15), (17),
(18), (19) become the same each other
EMV) =EP® =EP K =EP K =
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plates to excitation energy density of bulk
condensate reservoir as defined in Eq.(9). This
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implies that the first terms in the right hand
side of Eqgs.(15), (17), (18), (19) define “bulk”
energy, wheres the last terms decay as ternary
power of distance between the plates, which
manifestation of Casimir energy

(R) T hvs
E;” (k) = —— 5 (20)
2hvg
ECV(K) = B () = -T2, (21)
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Beside the second terms of Egs.(15), (18), (19)
in proportion to area of plates thus they are
surface energy, which is annihilated for
periodic BC as in Eq.(17).

The Casimir forces act on per an unit of the
plates produce from the Casimir energy
through —d,E (k) as following

EP(0) = -1 (23)
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which are the attractive forces arsing from the
negative energies.

In order to compare our results to the ones in
Refs.[4, 6, 3, 9], we scale EQs.(23), (24), (25)
by F, = hv,/&* as following

2
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where L = ¢/& is the distance between two
plates in dimensionless form. By this way, the
results of Refs.[4, 6, 3, 9] read as

Z
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Egs.(26), (27), (28) and Eqs.(29), (30), (31)
show that results obtained by Bogoluibov
theory are three times bigger than the ones
obtained by QFT. Based on these equations we
plot Fig.1, which represent the evolution of the

Casimir forces over distance between two
plates with different BCs, in which the solid
lines show our results, the dashed lines show
the results were obtained within QFT. Easily
recognize that the force corresponds to
periodic BC much greater than the ones
corresponds to other BCs, the Casimir force is
minimum when Robin BC is imposed.
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Figure 1. (Color online) The influence of the
distance between two plates on the Casimir
forces. The solid lines show the results
obtained by the Bogoliubov theory. The
dashed lines show the results obtained by the
QFT.

IV. DISCUSSIONS AND CONCLUSIONS

In the foregoing sections, the quantum
fluctuation energy and the Casimir effect of a
weakly interacting BEC are studied within the
Bogoliuboy theory for any usual BCs. The
main results are:

(1) Exactly recovered the well-known
quantum fluctuation energy formula of the
system in infinite space, which was reported in
previous researches [7, 16].

(i1) With the help of Euler-Maclaurin
formula, the Casimir energy as well as Casimir
force corresponding to any usual BCs are



found. The Casimir forces are attractive forces,
proportional to the speed of sound, and decay
as fourth power of the distance between two
plates. The minimum of the forces appears
when Robin BC is imposed. These laws the
same as the one were defined based on the
QFT.

(ili) We not only investigate the
Casimir effect but also clearly define the
surface energy of the system, which is a
positive quantity for Neumann BC, negative
for Dirichlet and Robin BCs, canceled out for
periodic BC.
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HIEU UNG CASIMIR TRONG KHI NGUNG TU BOSE-EINSTEIN
TUONG TAC YEU O NHIET PO KHONG

Pham Thé Song?, L& Thi Thu Trang?
!Khoa Khoa hoc T nhién — Coéng nghé, Truong dai hoc Tay Bac
2Khoa Vat Iy, Truong dai hoc sw pham Ha Ngi 2

Tom tdt: Trong khudn khé cia Iy thuyét Bogoliubov, ching tdi nghién citu nang heong thing
gidng heong tir Ciia khi ngung tu Bose-Einstein mét thanh phdn fuong tdc yéu bi gici han bai hai ban
phang song song ¢ nhiés dé khong trong thang ké chinh tac lon. Lue Casimir twong ing Véi cdc diéu
ki¢n bién Neumann, Dirichlet, Robin va tuan hoan cia thanh phan véc-to séng k. dwoc 0 sanh Vdi
két qua thu duwoc tir y thuyét trirong lirong tiz.

Tir kh6a: khi Bose twong tdc yéu; hiéu ing Casimir; Hiéu ing kich thwéc hiru han.
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