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Abstract: Within framework of the Bogoliubov theory of a dilute Bose gas, we investigate 

quantum fluctuation energy of one component weakly interacting Bose‐Einstein condensate (BEC) 

gas confined between two parallel plates at zero temperature in grand canonical ensemble (GCE). 

The Casimir forces corresponding to Neumann, Dirichlet, Robin and periodic boundary conditions 

(BCs) of the 𝑘𝑍‐wave vector component are compared to the one obtained by quantum field theory

(QFT). 
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I. INTRODUCTION 

Based on the Casimir’s original calculation 

method [1], D.C. Robert and Y. Pomeau studied 

of Casimir effect in a dilute homogeneous BEC 

gas, that is restricted between two yery large 

parallel plates separated by a distance ℓ[2,3]. In 

which, Dirichlet BC is imposed to the 𝑘𝑧‐wave

vector component, and the Casimir energy is 

defined by subtracting excitation energy 

corresponds to continuous momentum spectrum 

from excitation energy corresponds to discrete 

momentum spectrum. This studying found out 

the well‐known relation of Casimir pressure is 

𝑝𝐶 = −𝜋2ℎ𝑣𝑠/480ℓ4, where ћ is the Planck’s

constant, 𝑣𝑠 is the speed of sound in the system.

By this way, the authors of Ref.[4] proved that 

𝒑𝑪 = −𝝅𝟐𝒉𝒗𝒔/𝟑𝟎𝓵𝟒 for periodic BC. These

authors also developed multidimensional cut-

off technique to solve Casimir effect problem 

in massless scalar field [5]. Later, the result in 

Ref.[4] was recovered within QFT framework in 

one‐loop approximation, and series expansion of 

excitation energy about small value of 𝜉/ℓ[6], 

where 𝜉 being healing length of condensate [7]. 

In Ref.[8], by applying the Hamiltonian 

formalism, the results in Refs.[2, 3, 4] once again 

confirmed, moreover higher terms of the Casimir 

pressure were calculated by zeta‐functional 

regularization method. By using QFT combine 

cut‐off momentum, N.V.Thu [9] obtained the 

result exactly coincides with the ones given in 

Refs.[3, 4]. Recently, we not only obtained a 

similar result [10] but also developed the 

calculating to the double‐bubble approximation 

within framework of Cornwall‐Jackiw‐

Tomboulis (CJT) effective potential in improyed 

Hartree−Fock approximation (IHF) [11]. In one‐

loop approximation, Casimir effect in two 

components Bose‐Einstein condensate gas was 

first attained by N.V. Thu et 𝑎𝑙 in Ref.[12]. 

The aim of this paper is to studying of the 

Casimir effect in a weakly interacting Bose‐

Einstein condensate gas at condensate phase 
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based on Bogoliubov theory, and comparing 

the results with the ones were defined by using 

QFT before. The paper is organized as follows. 

In section 2, quantum fluctuation energy of a 

weakly interacting Bose gas is investigated in 

symmetry broken phase. The Casimir effect is 

considered in section 3. Conclusions are given 

in section 4 to close the paper. 

II. THE QUANTUM FLUCTUATION

ENERGY OF WEAKLY INTERACTING 

BOSE GAS 

In this section we consider the quantum 

fluctuation energy of a weakly interacting 

Bose gas in infinite three‐dimension space. 

According to the Bogoliubov theory [7], 

quantum fluctuation energy of a dilute boson 

gas at zero‐temperature reads as 

ℰ𝑞(k) =
1

2
∑ [𝜀(k) − 𝑔𝑛0 −

ћ2k2

2𝑚
+

𝑚(𝑔𝑛0)
2

ћ2k2 ]k≠0 .   (1) 

In which, k  being the module of the wave 

vector 𝑘⃗ , 𝑔 = 4𝜋ћ2𝑎𝑠𝑚
−1 > 0 determines the

strength of repulsive interaction between two 

intraspecies atoms, 𝑎𝑠 being 𝑠‐wave scattering

length, 𝑚 is atomic mass, 𝑛0 is identical atoms

density, 

𝜀(k) = √
ћ2k2

2𝑚
(
ћ2k2

2𝑚
+ 2𝑔𝑛0)   (2)

defines elementary excitation in the system, 

that called Bogoliubov dispersion relation [10, 

12]. Recently, Eq.(2) also found out by 

different methods. For examples, within 

perturbatiye framework of QFT [13], CJT 

formalism [14,11]. In dilute (weakly 

interacting) Bose gas, the diluteness condition 

is required, this means that 𝑛0𝑎𝑠
3 ≪ 1[13].

Assume that the system in the box 𝑉 =

𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧, from now on one notes ℓ ≡ 𝐿𝑧.

For simplicity, the wave vector is assumed 

satisfies Neumann BC has the form [15] 

k = √𝑘𝑥
2 + 𝑘y

2 + 𝑘𝑧
2,   (3)

𝑘𝑥 =
𝜋𝑛𝑥

𝐿𝑥
, 𝑘𝑦 =

𝜋𝑛𝒴

𝐿y
, 𝑘𝑦 =

𝜋𝑛z

ℓ
,

 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = 0, 1, 2.   (4)

Plugging (2), (3) and (4) into (1) yields 

ℰ𝑞(k) =
1

2
∑ ∑ ∑ [

∞

𝑛𝑧=0

∞

𝑛y=0

∞

𝑛𝑥=0

√
ћ2 (

𝜋2𝑛𝑥
2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿𝑦
2 +

𝜋2𝑛𝑧
2

ℓ2 )

2𝑚
(

ћ2 (
𝜋2𝑛𝑥

2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿y
2 +

𝜋2𝑛𝑧
2

ℓ2 )

2𝑚
+ 2𝑔𝑛0)

−𝑔𝑛0 −
ћ2(

𝜋2𝑛𝑥
2

𝐿𝑥
2 +

𝜋2𝑛𝑦
2

𝐿𝑦
2 +

𝜋2𝑛𝑧
2

ℓ2
)

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2(
𝜋2𝑛𝑥

2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿y
2 +

𝜋2𝑛𝑧
2

ℓ2
)

] .   (5) 

In infinite space, namely (𝐿𝑥, 𝐿𝑦, ℓ) → ∞, triple sums in Eq.(5) can be replaced by triple integrals.

Eq.(5) is rewritten as 
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ℰ𝑞(k) =
1

2
∫ 𝑑

∞

0

𝑛𝑥 ∫ 𝑑
∞

0

𝑛𝑦 ∫ 𝑑
∞

0

𝑛𝑧[√
ћ2 (

𝜋2𝑛𝑥
2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿y
2 +

𝜋2𝑛𝑧
2

ℓ2 )

2𝑚
(

ћ2 (
𝜋2𝑛𝑥

2

𝐿𝑥
2 +

𝜋2𝑛𝒴
2

𝐿y
2 +

𝜋2𝑛𝑧
2

ℓ2 )

2𝑚
+ 2𝑔𝑛0)

−𝑔𝑛0 −
ћ2(

𝜋2𝑛𝑥
2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿y
2 +

𝜋2𝑛𝑧
2

ℓ2
)

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2(
𝜋2𝑛𝑥

2

𝐿𝑥
2 +

𝜋2𝑛y
2

𝐿𝑦
2 +

𝜋2𝑛𝑧
2

ℓ2
)

] .   (6) 

Apply changing of variable method by setting: 𝑥 =
𝜋𝑛𝑥

𝐿𝑥
, 𝑦 =

𝜋𝑛𝒴

𝐿y
, 𝑧 =

𝜋𝑛𝑧

ℓ
 , one has 

ℰ𝑞(k) =
1

2

𝐿𝑥

𝜋

𝐿𝑦

𝜋

ℓ

𝜋
∫ 𝑑

∞

0

𝑥 ∫ 𝑑
∞

0

𝑦∫ 𝑑
∞

0

𝑧[√
ћ2(𝑥2 + 𝑦2 + 𝑧2)

2𝑚
(
ћ2(𝑥2 + 𝑦2 + 𝑧2)

2𝑚
+ 2𝑔𝑛0)

−𝑔𝑛0 −
ћ2(𝑥2+𝑦2+𝑧2)

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2(𝑥2+𝑦2+𝑧2)
] .   (7) 

In spherical coordinate, Eq.(7) has the form 

ℰ𝑞(k) =
1

2

𝐿𝑥

𝜋

𝐿𝑦

𝜋

ℓ

𝜋

𝜋

2
∫ 𝑑

∞

0
𝑟𝑟2 [√

ћ2𝑟2

2𝑚
(
ћ2𝑟2

2𝑚
+ 2𝑔𝑛0) − 𝑔𝑛0 −

ћ2𝑟2

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2𝑟2 ],   (8) 

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2.

Perform above integral over 𝑟 ∈ [0, 𝛬] , and takes limit 𝛬 → ∞ one finds 

ℰ𝑞(k) = 1

2
𝑔𝑛0

2𝑉 128

15√𝜋
√𝑛0𝑎𝑠

3 = 1

2
𝑔𝑛0𝑁

128

15√𝜋
√𝑛0𝑎𝑠

3,  (9) 

II. THE CASIMIR EFFECT

In order to deal with the Casimir effect, we 

assume that the system is confined to two 

parallel plates of area 𝐿𝑥 × 𝐿𝑦 , they are

perpendicular to Oz‐axis and separated by a 

distance ℓ. In the following, one only discusses 

finite‐size effect along 𝑧‐direction, this means 

that ℓ2 ≪ 𝐿𝑥 × 𝐿𝑦 . Furthermore, distance

between plates has to be enough for 

manifestation of quantum fluctuation [4], 

namely ℓ/𝜉 ≫ 1  , where 𝜉 = ℎ/√2𝑚𝑔𝑛0 .

Note that the system is considered in GCE, this 

means that it is connected with a bulk reservoir 

of condensation with condensate density equal 

to 𝑛0.

Owing to compactification of 𝑧 ‐direction, 

Eq.(5) become 

ℰ𝑞(k) =
1

2

𝐿𝑥

𝜋

𝐿𝑦

𝜋

𝜋

2
∫ 𝑑

∞

0

𝑥 ∫ 𝑑
∞

0

𝑦 ∑ [

∞

𝑛𝑧=0

√
ћ2(𝑥2 + 𝑦2 + 𝜋2𝑛𝑧

2/ℓ2)

2𝑚
(
ћ2(𝑥2 + 𝑦2 + 𝜋2𝑛𝑧

2/ℓ2)

2𝑚
+ 2𝑔𝑛0)

−𝑔𝑛0 −
ћ2(𝑥2+𝑦2+𝜋2𝑛𝑧

2/ℓ2)

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2(𝑥2+𝑦2+𝜋2𝑛z
2/ℓ2)

].   (10) 

In polar coordinate, Eq.(10) reads as 

ℰ𝑞(k) =
1

2

𝐿𝑥

𝜋

𝐿𝑦

𝜋

𝜋

2
∑ ∫ 𝑑𝑟𝑟

∞

0
∞
𝑛𝑧=0  [√

ћ2(𝑟2+𝜋2𝑛𝑧
2/𝑝)

2𝑚
(
ћ2(𝑟2+𝜋2𝑛𝑧

2/ℓ2)

2𝑚
+ 2𝑔𝑛0)

−𝑔𝑛0 −
ћ2(𝑟2+𝜋2𝑛𝑧

2/ℓ2)

2𝑚
+

𝑚(𝑔𝑛0)2

ћ2(𝑟2+𝜋2𝑛𝑧
2/ℓ2)

],   (11) 

in which 𝑟2 = 𝑥2 + 𝑦2.
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Integrating over 𝑟 ∈ [0, 𝛬] of (11), and take limit 𝛬 → ∞ yields 

ℰ𝑞(k) =
1

2

𝐿𝑥

𝜋

𝐿𝑦

𝜋

𝜋

2
∑ [

∞

𝑛𝑧=0

𝜋2𝑔𝑛0𝑛𝑧
2

2ℓ2
−

𝜋𝑔𝑛0𝑛𝑧

4ℓ
√

𝜋2𝑛𝑧
2

ℓ2
+

4𝑚𝑔𝑛0

ℎ2
+

𝜋4ℎ2𝑛𝑧
4

8𝑚ℓ4

−
𝜋3ћ2𝑛𝑧

3

8𝑚ℓ3
√𝜋2𝑛𝑧

2

ℓ2 +
4𝑚𝑔𝑛0

ℎ2 +
𝑚𝑔2𝑛0

2

ℎ2 (
1

4
+ ln [

1

2
+

ℓ

2𝜋𝑛𝑧

√𝜋2𝑛𝑧
2

ℓ2 +
4𝑚𝑔𝑛0

ℎ2 ])].   (12) 

By employing Euler‐Maclaurin formula in the form [17] 

∑ 𝑓∞
𝑛=0 [𝑛] = ∫ 𝑓

∞

0
[𝑥]𝑑𝑥 +

1

2
(𝑓[0] + 𝑓[∞]) +

1

12
(𝑓(1)[∞] − 𝑓(1)[0])

−
1

720
(𝑓(3)[∞] − 𝑓(3)[0]) +

1

30240
(𝑓(5)[∞] − 𝑓(5)[0)]… (13) 

with 𝑓[𝑛𝑧] ≡ ℰ𝑞(k), Eq. (12) produces

ℰ𝑞(k) = (𝐿𝑥 ×𝐿𝑦 × ℓ)
1

2
𝑔𝑛0

2 128

15√𝜋
√𝑛0𝑎𝑠

3 + (𝐿𝑥 × 𝐿𝑦)
√𝜋ℎ√𝑔𝑛0

3/2

4√𝑚
√𝑛0𝑎𝑠

3 − (𝐿𝑥 × 𝐿𝑦)
𝜋2ℎ√𝑔𝑛0

480√𝑚ℓ
3.         (14) 

Recast that the volume of the system is 𝑉 = 𝐿𝑥 × 𝐿𝑦 × ℓ, and 𝑣𝑠 = √𝑔𝑛0/𝑚 is speed of sound. Using

Eq.(14) one can defined quantum fluctuation energy per an unit area of plates is 

𝐸𝑞
(𝑁)(k) =

1

2
𝑔𝑛0

2ℓ
128

15√𝜋
√𝑛0𝑎𝑠

3 +
√𝜋ℎ𝑛0𝑣𝑠

4
√𝑛0𝑎𝑠

3 −
𝜋2ℎ𝑣𝑠

480ℓ3.   (15) 

In the cases either periodic BC, Dirichlet BC, or Robin BC is imposed, the 𝑘z‐component of the wave

vector is quantized as following [9, 15] 

𝑘𝑧 = 𝑛𝑧/𝐿                                                                         (16)

with 𝐿 = ℓ/2𝜋, 𝑛z = 0,±1,±2… for periodic BC, 𝐿 = ℓ/𝜋,  𝑛𝑧 = 1,2…  for Dirichlet BC, 𝐿 =

(ℓ + 𝜉/√2)/𝜋, 𝑛𝑧 = 1,2… for Robin BC.

Based on the Eq.(15) and quatizion condition (16), the quantum fluctuation energy per an unit area 

of plates correspond to periodic BC, Dirichlet BC, and Robin BC, respectively, are defined as 

𝐸𝑞
(𝑃)(k) =

1

2
𝑔𝑛0

2ℓ
128

15√𝜋
√𝑛0𝑎𝑠

3 −
𝜋2ℎ𝑣𝑠

30ℓ3 ,  (17) 

𝐸𝑞
(𝐷)(k) =

1

2
𝑔𝑛0

2ℓ
128

15√𝜋
√𝑛0𝑎𝑠

3 −
√𝜋ℎ𝑛0𝑣𝑠

4
√𝑛0𝑎𝑠

3 −
𝜋2ℎ𝑣𝑠

480ℓ3,   (18) 

𝐸𝑞
(𝑅)(k) =

1

2
𝑔𝑛0

2(ℓ + 𝜉/√2)
128

15√𝜋
√𝑛0𝑎𝑠

3 −
√𝜋ћ𝑛0𝑣𝑠

4
√𝑛0𝑎𝑠

3 −
𝜋2ℎ𝑣𝑠

480(ℓ+𝜉/√2)
3. (19)

In the case the two walls do not exist, which 

leads to quantization condition of the waye 

yector is canceled out, thus Eqs.(15), (17), 

(18), (19) become the same each other 

𝐸𝑞
(𝑁)(k) = 𝐸𝑞

(𝑃)(k) = 𝐸𝑞
(𝐷)(k) = 𝐸𝑞

(𝑅)(k) =

1

2
𝑔𝑛0

2ℓ
128

15√𝜋
√𝑛0𝑎𝑠

3, which times the size of the

plates to excitation energy density of bulk 

condensate reservoir as defined in Eq.(9). This 

implies that the first terms in the right hand 

side of Eqs.(15), (17), (18), (19) define “bulk” 

energy, wheres the last terms decay as ternary 

power of distance between the plates, which 

manifestation of Casimir energy 

𝐸𝐶
(𝑅)(k) = −

𝜋2ℎ𝑣𝑠

30ℓ3 .   (20) 

𝐸𝐶
(𝑁)(k) = 𝐸𝐶

(𝐷)(k) = −
𝜋2ћ𝑣𝑠

480ℓ3, (21) 
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𝐸𝐶
(𝑅)(k) = −

𝜋2ℎ𝑣𝑠

480(ℓ+𝜉/√2)
3. (22)

Beside the second terms of Eqs.(15), (18), (19) 

in proportion to area of plates thus they are 

surface energy, which is annihilated for 

periodic BC as in Eq.(17). 

The Casimir forces act on per an unit of the 

plates produce from the Casimir energy 

through −𝜕ℓ𝐸𝐶(k) as following

𝐹𝐶
(𝑃)(ℓ) = −

𝜋2ℎ𝑣𝑠

10ℓ4 ,   (23) 

𝐹𝐶
(𝑁)(ℓ) = 𝐹𝐶

(𝐷)(ℓ) = −
𝜋2ℎ𝑣𝑠

160ℓ4,   (24) 

𝐹𝐶
(𝑅)(ℓ) = −

𝜋2ℎ𝑣𝑠

160(ℓ+𝜉/√2)
4,   (25) 

which are the attractive forces arsing from the 

negative energies. 

In order to compare our results to the ones in 

Refs.[4, 6, 3, 9], we scale Eqs.(23), (24), (25) 

by 𝐹0 = ℎ𝑣𝑠/𝜉
4 as following

𝐹𝐶
(𝑃)(ℓ) = −𝐹0

𝜋2

10

1

𝐿4,   (26) 

𝐹𝐶
(𝑁)(ℓ) = 𝐹𝐶

(𝐷)(ℓ) = −𝐹0
𝜋2

160

1

𝐿4,   (27) 

𝐹𝐶
(𝑅)(ℓ) = −𝐹0

𝜋2

160

1

(𝐿+1/√2)
4. (28)

where 𝐿 = ℓ/𝜉  is the distance between two 

plates in dimensionless form. By this way, the 

results of Refs.[4, 6, 3, 9] read as 

𝐹𝐶
(𝑃)(ℓ) = −𝐹0

𝜋2

30

1

𝐿4,   (29) 

𝐹𝐶
(𝐷)(ℓ) = −𝐹0

𝜋2

480

1

𝐿4,   (30) 

𝐹𝐶
(𝑅)(ℓ) = −𝐹0

𝜋2

480

1

(𝐿+1/√2)
4. (31)

Eqs.(26), (27), (28) and Eqs.(29), (30), (31) 

show that results obtained by Bogoluibov 

theory are three times bigger than the ones 

obtained by QFT. Based on these equations we 

plot Fig.1, which represent the evolution of the 

Casimir forces over distance between two 

plates with different BCs, in which the solid 

lines show our results, the dashed lines show 

the results were obtained within QFT. Easily 

recognize that the force corresponds to 

periodic BC much greater than the ones 

corresponds to other BCs, the Casimir force is 

minimum when Robin BC is imposed. 

Figure 1. (Color online) The influence of the 

distance between two plates on the Casimir 

forces. The solid lines show the results 

obtained by the Bogoliubov theory. The 

dashed lines show the results obtained by the 

QFT. 

IV. DISCUSSIONS AND CONCLUSIONS

In the foregoing sections, the quantum 

fluctuation energy and the Casimir effect of a 

weakly interacting BEC are studied within the 

Bogoliuboy theory for any usual BCs. The 

main results are: 

(i) Exactly recovered the well‐known

quantum fluctuation energy formula of the 

system in infinite space, which was reported in 

previous researches [7, 16]. 

(ii) With the help of Euler‐Maclaurin

formula, the Casimir energy as well as Casimir 

force corresponding to any usual BCs are 
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found. The Casimir forces are attractive forces, 

proportional to the speed of sound, and decay 

as fourth power of the distance between two 

plates. The minimum of the forces appears 

when Robin BC is imposed. These laws the 

same as the one were defined based on the 

QFT. 

(iii) We not only investigate the

Casimir effect but also clearly define the 

surface energy of the system, which is a 

positive quantity for Neumann BC, negative 

for Dirichlet and Robin BCs, canceled out for 

periodic BC. 
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HIỆU ỨNG CASIMIR TRONG KHÍ NGƯNG TỤ BOSE-EINSTEIN 

TƯƠNG TÁC YẾU Ở NHIỆT ĐỘ KHÔNG 

Phạm Thế Song1, Lã Thị Thu Trang2 
1Khoa Khoa học Tự nhiên – Công nghệ, Trường đại học Tây Bắc 

2Khoa Vật lý, Trường đại học sư phạm Hà Nội 2 

Tóm tắt: Trong khuôn khổ của lý thuyết Bogoliubov, chúng tôi nghiên cứu năng lượng thăng 

giáng lượng tử của khí ngưng tụ Bose-Einstein một thành phần tương tác yếu bị giới hạn bởi hai bản 

phẳng song song ở nhiệt độ không trong thống kê chính tắc lớn. Lực Casimir tương ứng với các điều 

kiện biên Neumann, Dirichlet, Robin và tuần hoàn của thành phần véc-tơ sóng kz được so sánh với 

kết quả thu được từ lý thuyết trường lượng tử. 

Từ khóa: khí Bose tương tác yếu; hiệu ứng Casimir; Hiệu ứng kích thước hữu hạn. 
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