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Abstract: In this work, we prove the existence of decay solution in mean square moment for a
class of stochastic integro-differential equations with infinite delays driven by fractional Brownian
motion. The existence of mild solutions is obtained by using the Banach fixed point theorem and

some inequality technique.

Keywords: Fractional Brownian motion; Integro-differential equations; Fixed point theory;

Infinite delays.

1. INTRODUCTION
In this work, we consider the following
stochastic integro-differential equation with
infinite delays

duit) = ‘E%Au(s)dsﬂ(t,ut) dt

+g®)dW " (t),t>0, 2 €(1,2)
U, =@ eB,

here the unknown function u takes values in a
Banach space X , A is a sectorial operator of

type (@,0) which will be defined below,
f:[0,0)xB—>X , g:[0,00) >L(Y,X) ,
W" is a fractional Brownian motion with

€D

He(%;l) on a real line and a separable

Hilbert space Y, u, =u(t+:) is the delay term
with the interval of delay time [—o0,0], and
u(s) = ¢(s) is the initial datum. Our objective
is to verify the existence of mild solution to
problem (1.1) with the state space B. To our
knowledge, this is the first study of the
existence of mild solutions to considered
problem.

The fractional Brownian motion (fBm for
short) is a family of centered Gaussian
processes with continuous sample paths
indexed by the Hurst parameter H (0,2). It is
a self-similar process with stationary
increments and has a long-memory when
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H >%. These significant properties make
fractional Brownian motion a natural
candidate as a model for noise in a wide
variety of physical phenomena, such as
mathematical finance, communication
networks, hydrology and medicine. For more
details on fBm, we refer the readers to the
articles [1, 2, 3, 8]. It is worth pointing out
that, there are only a small number of results
about the existence of decay solution in mean
square moment to the stochastic differential
equations with infinite delays. Therefore, it is
necessary to develop and explore the existence
criteria with these types of equations.

2. PRELIMINARIES

2.1. Resolventoperators

Let L(X) be the space of bounded linear
operators on X . We recall some notions and
results on resolvent operators related to our
problem.

Definition 2.1.1. Let A be a closed and linear
operator with domain D(A) on a Banach
space X . We say that A is the generator of

an « -resolvent if there exists wel) and a
strongly continuous function S, :[1" — L(X)

such that {1“ :Red > w}< p(A) and
29 - A x = j:e‘MSa (t)xdt,

ReA>w, x e X.
A case ensuring the existence of « -resolvent

was discussed in [4]. Specifically, let A be a
closed and densely defined operator. Assume

that A is a sectorial of type (w,6), that is,



there exist el ,96(0,%),M >0 such that

its resolvent lies in [1\X  , and

A M

|1ﬂf¢zwﬂ1

Here X~ ,={o+A:4el |arg(-4)|<d}. In

the case 0<@<z(l-al2), S, () exists and
has the following formula:

S, (t) = L j e 2“1 (A%l — A)td At >0,
27l o7

where 5 is a suitable path lying outside X ,.
Furthermore, we have the following assertion
for the behavior of S, () which has been
proved in [4, Theorem 1].

Proposition 2.1.1. Let A is a sectorial of type
(w,0) and 0<O<n(l—al/2) . Then there

exists C >0 independent on t such that

I's, ()l<—C
1+ pt”
2.1)

for t>0.
2.2. Phase spaces
In this work, we will deploy the axiomatic

definition of the phase space B introduced by
Hale and Kato in [5].

Let B be a linear space of functions mapping
(—o0,0] into Bannach space X endowed with
a seminorm |-|; and satisfying the following
fundamental axioms. If a  function
y:(—o,T+o]> X such that
Ylor:1€C([o, T +0];X) and y, €B, then
(B1) y,eB for te[o, T +0o];

(B2) the function t+= Yy, is continuous on
[0, T +0];

(B3)
IytIBSK(t—a)supt"yII+M(t—a)IygIB ;
where K, M :[0,00) —[0,%0), K is continuous,
M is locally bounded, and they are
independent of vy .

(B4) there exists n>0 such that
Il p(0) I<fi| @], for all pB.
We give here an examples of phase spaces.

For more examples, we refer to the book by
Hino, Mukarami and Naito [7].

C, ={p € C((~0,0]; X): lim e”’¢(0) exists in X},

(2.2), where , is a positive number. This
phase space satisfies (B1) - (B3) with

K{t)=LM(t)=e", (2.3)
and it is a Banach space with the norm
|pls=supe” Il p(&) I .

2.3. Fragc%ional Brownian motion

We first recall the definition of Wiener
integrals  with respect to an infinite
dimensional fractional Brownian motion with

Hurst index H >% (see [8]).

Let (©2,F ,P) be a complete probability space
with a normal filtration {F }_,;; and T >0

be an arbitrary fixed horizon. A one-
dimensional fractional Brownian motion
(Bm) with Hurst parameter H e (0;1) is a
centered Gaussian process

B ={B"(t),0<t<T} with the covariance
function

R(t,s) = E[5" (1) 8" (5)]

=%(|t|2“+|s|“—|t—s|2“).

It is known that 8" (t) with H >% admits the
following Volterra representation

t
B =[ K(t,s)dB(s)
where £ is a standard Brownian motion and
the Volterra kernel K(t,s) is given by

t H-2(u H_% _
K(t,s):CHL(u—s) 2 3 du;t>s.

For the deterministic function @ e L*([0;T]),
the fractional Wiener integral of ¢ with

respect to  B" s defined by
[ p(9)dp" ) = [, Kip(s)dps)

where K p(s) = LT o(r) aa—I: (r,s)dr.

Let Y be a real, separable Hilbert space and
L(Y,X) be the space of bounded linear

operators from Y to X . For the sake of
convenience, we shall use the same notation to

denote the norms in X , Yy and L(Y,X). Let
{e.;n=12,..} be a complete orthonormal
basis in Y and QeL(Y,Y) be an operator
defined by Qe,=A4¢€, with finite trace

trQ =>4, <o, where 4,;n=12,... are non-

n=1
negative real numbers. We define the infinite
dimensional fBm on X with covariance Q as



WH (1) =iﬂenﬂn'* (t) , where g (t) are

n=1
real, independent fBm’s. This process isa X -
valued Gaussian, it starts from 0, has zero
mean and covariance:

E(W" (), x)(W" (s),y) = R(t,5){Q(X), ¥),

forallx,yeY andt,s €[0;T].
In order to define Wiener integrals with

respect to the Q-Bm W " (t), we introduce the
space LI :=L)(Y,X) ofall Q-Hilbert-Schmidt
operators Y — X We recall that
wel(Y,X) is called a Q -Hilbert-Schmidt

operator  if Ilz//IILO:Z||\/Z://en |F<o and
2 n=1
that the space LJ equipped with the inner

product (¢,y) , = i((pen,l//en> Is a separable
2

Hilbert space.

The fractional Wiener integral of the function
w:[0;T]— LO(Y, X) with respect to Q-fBm is
defined by

[y () =3[ JRwE)eds ©)

=3[R K e )S)dA,(6).

(2.4), where . is the standard Brownian

motion used to present A" . We have the

following fundamental inequality, which can
be proved by similar arguments as [2, Lemma
2] and [3, Lemma 2].

Lemma 2.3.1. If :[0;T]— L3(Y, X) satisfies

jOTII w(s) IIﬁg ds <o then the sum in (2.4) is
well defined as an X -valued random variable
and for any «,f€[0,T] with a>/f, we
have

EH [y (syaw (s)H2

<2H(B-a) [ Iy ()12, ds.
3. MAIN RESULTS ’ 2
In order to study the existence of mind
solutions to problem (1.1). Let @B, we
define the space

BC, ={u e C((0,+x); L*(©, X)) :
u(0) = (@)}l ull y. < o0}
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clearly that it is a Banach space with the norm
lullZ.=supll u(t) I . We denote the set

t>0
B:,(p)={yeBC, il yll;.<R,
supt’E Il y(t) I°< p}

where 9=a—(2H -1) :E)) and numbers
R,p>0 are given. Then B (p) is a closed
convex subset in BC, .

For veBC,, we define the function

V[gp]:[1 — X as follows

, —0o<t<0,
vlpl(t) = {\4/0((:)) t> (;t ]
Then, clearly |
B (0(t+9)1 —0< @<t
Vel (0) = {V(t +0), 6e[-t,0].

In this work, we use the following definition
of solution to (1).

Definition 3.1 Given ¢eB. A X -valued

stochastic process {u(t),t €1} is called a mild
solution of (1.1) if

) ueC((0.+0), (2 X)),

(i) u(t)=e(t),t<0.

(iii)y For arbitrary t>0, we have

u(t) =S, O9(0) + [, S, (t—5) f (s,u,)ds

+ jo‘ S, (t-s)g(s)dW" (s) P-as.
Now we consider the operator

F :BC, »BC,,
F (V1) =S,p(0)+ [ S, (t-5)f(s,v,)ds

4 jot S, (t—s)g(s)dW " (s).

It is clear that if v is a fixed point of F then
V[p] is amild solution to (1.1).

Concerning problem (1.1), we give the
following assumptions:

(B) The phase space B obeys (B1) - (B4) such
that the functions K and M are uniformly

bounded and _fs‘gMz(s)<oo.
0

(F) The map f:0"xB— X and there exists
afunction ¢ e L5 () such that for every
X,y € B we have



I f(t,x)— f(t,y)I2
tell”.

(G) The map g:0 " —LI(Y, X) satisfies
j:’t“ I g(t) 1%, dt <.

As a consequence, we have the following
result.

<S@)|x-y3, for ae.

Lemma 3.1. Let (F), (G) and (B) hold. Then
there exist two positive real numbers R and p

such that F (BS,(p)) = By, (p), provide that

A, —sup{ej IS, (t-9)lds[ I S, (t—s) I (S)K” (s)ds}<1.

(3.1)
Proof
Here we recall that

F (u)®) =S, Op(0)+] S, (0 (s,u,)ds

+j; S, (1)g(s)dW" (s), t =0

First, we prove that there exists a number
R>0 such that F (B;) = B, , where B, is the
ball in BC, centered at origin with radius R.

Assume to the contrary that for each nell
there exist u,eBC, and 2z, =F(u,)

that supEllu, (t)lI°’<n  but

[ 0]

supEll z, (t) I’>n. From the formula of F |
>0
V\t/e have

satisfying

Ell z,(t) I?<3E1 S, (t)¢(0) I
+3El j; S, (t—s)f(s,u)dsll?
+3E jot S, (t—s)g(s,u,.)dW " (s) II2
=1L, )+1,(t)+1,(t),

where
I,(t)=3EI S_(t)p(0) 112,

L) =3E1 [ S, (t-5)f (s.u,)dsl?,
1,(t)=3E I;Sa(t—s)g(s,uns)dWH(s) Iz,

Denote S =supll S_(t) Il , we have
t>0

1,(t) <3(S2)?Ell (0) II? (3.2)
And using Holder's inequality and assumption
(F), we have

|2(t)33j;|| S, (t—s) IIdsI;II S, (t—s)I EIl f(s,u)I2 ds
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<3[ IS, (t-s)llds[ IS, (t—5) I(S)E |u,, |2 ds-
Because of the fact that.
|U; [s< K(t) sup u(r)+M ()| olg .

ref0,t]

Then

Elu, fp< E(K(S) sup U(r)+M(S)|¢|B]

ref0,s]

< 2K?(s) sup Ellu(r) I +2M?(s)E | o3 .
ref0,s]
So, we have

1) <6sup{E U, @12} 1S, (t-3)Ids| 'S, (t-5) IC(5)K? ()ds
+6E| o[ j;n S, (t-s) IIds.[(:II S, (t—s) ()M *(s)ds

<nA, +6E gl j; I'S, (t—s)lds j;u S, (t—3) IZ(s)M2(s)ds,
(3.3), where

A, —sup{BI IS, (t—s) Ildsj IS, (t—s)I(s)K (s)ds}

t>0

Because of Lemma 2.3.1 and assumption (G),
we have

1,(t) <6Ht2H-1j I's, (t=s)I% 1 g(s) 1%, ds
t2H -1
seHc—j IS (t—s)Ill g(s)lI,ds
t a 0 a L,
1+,U(*)

+H22“+2j I'S, (t—s) %21 g(s) I ds

(3.4)
Combining (3.1) - (3.4) we obtain

Ell z () I°<nA_ +Q(t),
where

Q(t)=3i*(S; ) El ¢l
+6E [l 1S, (t—s)ds[ IS, (t—s) IS ()M (s)ds

t2H-1 42 ,

+6HC—t_[0 I'S, (t—s) Il g(s)I%ds
1+u(*)“

+H 2202 /||s (t=s) 17" 1 g(s) 1%, ds,

be a uni ormly bounded function, thanks to
assumptions (B), (G), S,(t) is uniformly
bounded and the fact that

sup j IS, (t—s)llds = sup j IS, (r)lidr

t>0 t>0

<sup —dr < oo,
20 Y01+ pur”
Hence



2
1<sup Ellz,®1 <su QM) +A,.

>0 n >0 N
Passing to the limit in the last inequality as
n — oo, We get a contradiction with (3.1).
Second, we prove that there exists o >0 such

that F (B ,(p)) = By, (p). Assume to the
contrary that for each nell there exists
u, € By satisfying that supt’Ellu (t)I°<n

t>0

but z, =F (u,) £ By ,(n), it means that
supt’Ell z, (t)I°>n. For t 20, we have

t>0
tEll z, (0) IP<°E NS, ()e(0) I
t
+3EN [ S, (t=s)f(s,u,)ds I
LE j;sa(t—s)g(s)dw (s) I

=3(R(t) + B,(t) + R (1)),
where

PO =tENI'S,()e0)1I%
P() =t’EN [ S, (t-5)f (s.u,)ds 1%

P =tEN [ 'S, (t-5)g(s)dW " (5) 117,

Considering IS (t)ll< C .Vt >0, then
“ 1+ ut”

Pt)< t°C?E| g0(02) I
1+ pt®)
(3.5)

Through assumptions (F), we have

p,(t) <t’ j;u S, (t—s) Ilds‘[(:ll S, (t-s)IC(S)E|u,, [2 ds

<2t sup{E Il u, (t) ||2}f0‘ I'S,(t-s) IIdsj;II S, (t-s) 12 (s)K?(s)ds

+2E| o} tgj;n S, (t-s) ||dsj;|| S, (t—s)I£(s)M?(s)ds

<lna c2E10p

SO

j IS, (t—s) IIds_[ Z(s)M2(s)ds

+2"E| @) jo IS, (t—s)lds L tlzu S, (t—5) Is®¢(s)M2(s)ds.

(3.6)
In addition,

R, (t) < 2Ht” IIIS t—s)* g(s)II2 ds, it's
because of that o =3+ (2H -1).

Similar to previous estimate, ones get

— LIS, (t=s) 1 g(9) 1%,
t @ Jo L2
1 _

+u(3)

alpg [t 2ea 2
+2 HLZII S, (t=s) 1’5" I g(s) I%, ds.

P(t) <2HC

(3.7)
Combining (3.5)- (3.7) we obtain

t’Ell z, (t) 1< nA_ +3G(t),
(3.8)
where

tR°C’E| gl
- ut“)2

w[zj

+2E | j;u S, (t—s)lids j;u S, (t—s) IS’ (s)M3(s)ds

G(t) =

+2E | ol j IS, (t—s) IIds_[ Z(s)M?(s)ds

+2Hc—j I's, t=s) I g(s) I,ds

+27H j I'S, (t=s)I*s" Il g(s) 1%, ds,
which is unlformly bounded. It follows from
(3.8) that

tEll z,(t) 12
<D < n3G(t) +A,.

n
We get a contradiction with (3.1) by passing to
the limit in the last inequality as n—oo. The
proof is complete.

Theorem 3.1. If conditions in Lemma 3.1
hold, then the mild solution to (1.1) exists
uniquely and decays to zero in mean square

moment, i.e., ENlu(t) >0, ast — oo
Proof

First of all, for u e C([0,+0), L*(,£%)) we

check that the mapping t — F (u)(t) belongs
to the space C([O, +0), LZ(Q,KZ)). To do that,
let t,,t, >0.We have

-9 (5)- S, (, -9 ()W (5)

<2E|[*(S, (L -9)-8, (&, -

2
+2E Hfz S, (t, - 5)g(s)dw " (s)H = 3,43,

Applying Lemma 2.3.1t0 J,,



3, <AHER S, (6 -9) -, (4, ~9)]9(s)

2
0 ds

< 4HEH j;

It can be considered that t; is fixed and
t, =t +h. Denote

Qu(®) =[S, =98, & =) 1" g(s)]],

then Q,(s) >0 as h—0 forall se(0,t).
In addition

Qu(5) <21 S, (4, —9) I +11 S, (t, — ) I%) I g (5) I,

<4(87)° I g(s)I5:=Q(s) e L(O.t),

we conclude, by Lebesgue dominated
convergence theorem that,

J.;Qh(s)ds —~>0ash—0.

It leads to J, -0 when |t,—t |[>0. Now
applying Lemma 2.3.1to J, we obtain

t
J, 4H [t~ " [[s, (t, - 9)g(s)]| ds

t
<ASIHIL -t [Mo(s)

when |t, -t |—>0. The proof is therefore
complete, thanks to the continuity of

t—S, (0)e(0) and t— j; S, () f (s,u,)ds.

To get desired results, it is enough to show that

the operator F has a unique fixed point in
By, (p). For u,veBC, and the formula of

F , we have
EllF (u)(t)—F (v)(t) I

2
,ds — 0,
L2

<Ell I;Sa(t—s)(f(s,us)— f(s,v,))ds .

Noting that

E|u,—v, [s< E Il K(s) sup (u(r)—v(r))I?

ref0,s]

< K2(s) sup E llu(r)—v(r)II?,
ref0,s]
thanks to assumption (B). Then

ENF U)®-F WO IP=EN 'S, t-9)(f(s.u)-f(sv,)dsI?
< j;u S, (t—s)lids j;u S, (t-s)IC(s)E |u, —v, [} ds

SJ'[II S, (t—s) IIdsJ'III S, (t—s) L (s)K?(s) sup Elu(r)—v(r)lI* ds
0 0 ref0,s]

S.(t=9)-S, (-9 1PN g(s)] ,ds.

< ( [lrs,-s)uds[I's, ts) Ilg(s)Kz(s)ds)sup Ellu@®)—v(t)I?

S%Aw SUpE Il u(®) ~v(®) 2. (3.9)
By the estimate (3.9), we obtain that
IlF (u)—F (v) IIZBCS%AOO lu-viiZ, .
The last relation ensures that the
solution operator F is a contraction mapping
on BC,. By Lemma 3.1 we have the

conclusion due to Banach fixed point
principle.

Remark 3.1. The assumptions (A), (F), (G)
are very popular in the context of solvability

problems. Consider the phase space B=C,
with , is a positive number, where the norm

in B is given by |w|,=supe” Il p(&) .
Thanks to the formula (2€.S3?), we have

Kt)=LM()=e"".
So one observes that K and M are uniformly

bounded, Is‘gMz(s)<oo and then assumption
0

{\bf (B)} is satisfied with M?(t)=o(1) as
t — co. Condition (3.1) will be satisfied with a
suitable function ¢ e Ly (0 ). For example,

we can choses £'(t) = ﬁ with 0>0 is small
+
enough.

4. CONCLUSION

In this paper, we prove that the mild solution
to (1.1) exists uniquely and decays to zero in
mean square moment by applying the fixed
points method. After that, we give a remark to
the abstract results.
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